4.4 Article

Retention of solutes and different-sized particles in the digestive tract of the ostrich (Struthio camelus massaicus), and a comparison with mammals and reptiles

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.cbpa.2012.05.184

关键词

Ratites; Ventriculus; Passage; Digestion; Maximum intake rate

向作者/读者索取更多资源

Ostriches (Struthio camelus) achieve digesta retention times, digesta particle size reduction and digestibilities equal to similar-sized herbivorous mammals, in contrast to some other avian herbivores. The sequence of digestive processes in their gastrointestinal tract, however, is still unexplored. Using two groups of four ostriches (mean body mass 75.1 +/- 173 kg) kept on fresh alfalfa, we tested the effect of two intake levels (17 and 42 g dry matter kg(-0.75) d(-1)) on the mean retention time (MRT) of a solute and three different-sized (2, 10, 20 mm) particle markers, mean faecal particle size (MPS), and digestibility. Intake level did not affect MRT, but MPS (0.74 vs. 1.52 mm) and dry matter digestibility (81 vs. 78%). The solute marker (MRT 22-26 h) was excreted faster than the particle markers; there was no difference in the MRT of 10 and 20 mm particles (MRT 28-32 h), but 2 mm particles were retained longer (MRT 39-40 h). Because the solute marker was not selectively retained, and wet-sieving of gut contents of slaughtered animals did not indicate smaller particles in the caeca, the long MRT of small particles is interpreted as intermittent excretion from the gizzard, potentially due to entrapment in small grit The marker excretion pattern also showed intermittent peaks for all markers in five of the animals, which indicates non-continuous outflow from the gizzard. When adding our data to literature data on avian herbivores, a dichotomy is evident, with ostrich and hoatzin (Opisthocomus hoazin) displaying long MRTs, high digestibilities, and gut capacities similar to mammalian herbivores, and other avian herbivores such as grouse, geese or emus with shorter MRTs, lower fibre digestibilities and lower gut capacities. In the available data for all avian herbivores where food intake and MRTs were measured, this dichotomy and food intake level, but not body mass, was related to MRT, adding to the evidence that body mass itself may not be sole major determinant of digestive physiology. The most striking difference between mammalian and avian herbivores from the literature is the fundamentally lower methane production measured in the very few studies in birds including ostriches, which appears to be at the level of reptiles, in spite of general food intake levels of a magnitude as in mammals. Further studies in ostriches and other avian herbivores are required to understand the differences in digestive mechanisms between avian and mammalian herbivores. (C) 2012 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据