4.4 Article

Molecular cloning and thermal stress-induced expression of a pi-class glutathione S-transferase (GST) in the Antarctic bivalve Laternula elliptica

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.cbpa.2008.09.028

关键词

Antarctic; Laternula elliptica; Pi class glutathione S-transferases; Recombinant GST; Thermal stress

资金

  1. Korea Polar Research Institute (KOPRI) of the Korea Ocean Research & Development Institute (KORDI). [PE08040]
  2. Ministry of Education, Science & Technology (MoST), Republic of Korea [PE08040] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Glutathione S-transferases (GSTs) are multifunctional phase II detoxification enzymes that catalyze the attachment of electrophilic substrates to glutathione. The pi-class GST cDNA (leGSTp) was cloned from the cold-adapted Antarctic bivalve Laternula elliptica. We used degenerated primers designed based on highly conserved regions of known mollusk GSTs to amplify the corresponding L. elliptica mRNA. Full-length cDNA was obtained by rapid amplification of cDNA ends (RACE). The full sequence of the GST cDNA was 1189 bp in length, with a 5' untranslated region (UTR) of 74 bp, a 3' UTR of 485 bp, and an open reading frame of 630 bp encoding 209 amino acid residues with an estimated molecular mass of 23.9 kDa and an estimated isoelectric point of 8.3. Quantitative RT-PCR confirmed basal expression of leGSTp, which was up-regulated upon heat treatment (10 degrees C for different time periods) by a factor of 2.3 (at 24 h) and 2.7 (at 48 h) in the digestive gland and gill tissues, respectively. The recombinant leGSTp expressed in Escherichia coli was purified by affinity chromatography and characterized. The purified leGSTp exhibited high activity towards the substrates ethacrynic acid (ECA) and 1-chloro-2,4-dinitrobenzene (CDNB). The recombinant leGSTp had a maximum activity at approximately pH 8.0, and its optimum temperature was 35 degrees C. (C) 2008 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据