4.7 Article

Dynamic modeling of a Stewart platform using the generalized momentum approach

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.cnsns.2009.01.001

关键词

Parallel manipulators; Dynamics; Robotics

向作者/读者索取更多资源

Dynamic modeling of parallel manipulators presents an inherent Complexity. mainly due to system closed-loop structure and kinematic constraints. In this paper. an approach based on the manipulator generalized momentum is explored and applied to the dynamic modeling of a Stewart platform. The generalized momentum is used to compute the kinetic component of the generalized force acting on each manipulator rigid body. Analytic expressions for the rigid bodies inertia and Coriolis and centripetal terms matrices are obtained, which can be added, as they are expressed in the same frame. Gravitational part of the generalized force is obtained using the manipulator potential energy. The computational load of the dynamic model is evaluated, measured by the number of arithmetic operations involved in the computation of the inertia and Coriolis and centripetal terms matrices. It is shown the model obtained using the proposed approach presents a low computational load. This could be an important advantage if fast simulation or model-based real-time control are envisaged. (C) 2009 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据