4.7 Article

Eph-B2/Ephrin-B2 Interaction Plays a Major Role in the Adhesion and Proliferation of Waldenstrom's Macroglobulinemia

期刊

CLINICAL CANCER RESEARCH
卷 18, 期 1, 页码 91-104

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1078-0432.CCR-11-0111

关键词

-

类别

资金

  1. Kirsch Laboratory for Waldenstrom's Macroglobulinemia
  2. Heje fellowship
  3. International Waldenstrom's Macroglobulinemia Foundation (IWMF)

向作者/读者索取更多资源

Purpose: The ephrin receptors (Eph) are found in a wide range of cancers and correlate with metastasis. In this study, we characterized the role of Eph-B2 receptor in the interaction of Waldenstrom's macroglobulinemia (WM) cells with the bone marrow microenvironment. Experimental Design: We screened the activity of different receptor tyrosine kinases in WM patients and found that Eph-B2 was overexpressed compared with control. Also, we tested the expression of ephrin-B2 ligand on endothelial cells and bone marrow stromal cells (BMSC) isolated from WM patients. We then tested the role of Eph-B2/Ephrin-B2 interaction in the adhesion of WM cells to endothelial cells and BMSCs; the cell signaling induced by the coculture in both the WM cells and the endothelial cells; WM cell proliferation, apoptosis, and cell cycle in vitro and tumor progression in vivo; and in angiogenesis. Results: Eph-B2 receptor was found to be activated in WM patients compared with control, with a 5-fold increase in CD19(+) WM cells, and activated cell adhesion signaling, including focal adhesion kinase, Src, P130, paxillin, and cofilin, but decreased WM cell chemotaxis. Ephrin-B2 ligand was highly expressed on endothelial cells and BMSCs isolated from WM patients and on human umbilical vein endothelial cells and induced signaling in the endothelial cells promoting adhesion and angiogenesis. Blocking of ephrin-B2 or Eph-B2 inhibited adhesion, cytoskeletal signaling, proliferation, and cell cycle in WM cells, which was induced by coculture with endothelial cells and decreased WM tumor progression in vivo. Conclusion: Ephrin-B2/Eph-B2 axis regulates adhesion, proliferation, cell cycle, and tumor progression in vivo through the interaction of WM with the cells in the bone marrow microenvironment. Clin Cancer Res; 18(1); 91-104. (C) 2011 AACR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据