4.3 Article

Sex comparison of hamstring structural and material properties

期刊

CLINICAL BIOMECHANICS
卷 24, 期 1, 页码 65-70

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.clinbiomech.2008.10.001

关键词

Muscle stiffness; Elastic modulus; Joint stability; Neuromuscular; Anterior cruciate ligament

向作者/读者索取更多资源

Background: Musculotendinous stiffness provides an estimate of resistance to joint perturbation, thus contributing to joint stability. Females demonstrate lesser hamstring stiffness than males, potentially contributing to the sex discrepancy in anterior cruciate ligament injury risk. However, it is unclear if the sex difference in hamstring stiffness is due to differences in muscle size or to inherent/material properties of the musculotendinous unit. It was hypothesized that hamstring stiffness, stress, strain, and elastic modulus would be greater in males than in females, and that hamstring stiffness would be positively correlated with muscle size. Methods: Stiffness was assessed in 20 males and 20 females from the damping effect imposed by the hamstrings on oscillatory knee flexion/extension following joint perturbation. Hamstring length and change in length were estimated via motion capture, and hamstring cross-sectional area was estimated using ultrasound imaging. These characteristics were used to Calculate hamstring material properties (i.e., stress, strain, and elastic modulus). Findings: Stiffness was significantly greater in males than in females (P < 0.001). However, stress, Strain, and elastic modulus did not differ across sex (P > 0.05). Stiffness was significantly correlated with cross-sectional area (r = 0.395, P = 0.039) and the linear combination of cross-sectional area and resting length (R-2 = 0.156, P = 0.043). Interpretation: Male's hamstrings possess a greater capacity for resisting changes in length imposed via joint perturbation from a structural perspective, but this property is similar across sex from a material perspective. Females demonstrate lesser hamstring stiffness compared to males in response to standardized loading conditions, indicating a compromised ability to resist changes in length associated with joint perturbation, and potentially contributing to the higher female ACL injury risk. However, the difference in hamstring stiffness is attributable in large part to differences in Muscle size. (C) 2008 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据