4.7 Article

Galectin-1 Accelerates Wound Healing by Regulating the Neuropilin-1/Smad3/NOX4 Pathway and ROS Production in Myofibroblasts

期刊

JOURNAL OF INVESTIGATIVE DERMATOLOGY
卷 135, 期 1, 页码 258-268

出版社

ELSEVIER SCIENCE INC
DOI: 10.1038/jid.2014.288

关键词

-

资金

  1. National Science Council, Taiwan [NSC 101-2320-B-006-026-MY3, NSC102-2314-B-006-024-MY3, NSC 102-2325-B-006-016]

向作者/读者索取更多资源

Myofibroblasts have a key role in wound healing by secreting growth factors and chemoattractants to create new substrates and proteins in the extracellular matrix. We have found that galectin-1, a beta-galactose-binding lectin involved in many physiological functions, induces myofibroblast activation; however, the mechanism remains unclear. Here, we reveal that galectin-1-null (Lgals1(-/-)) mice exhibited a delayed cutaneous wound healing response. Galectin-1 induced myofibroblast activation, migration, and proliferation by triggering intracellular reactive oxygen species (ROS) production. A ROS-producing protein, NADPH oxidase 4 (NOX4), was upregulated by galectin-1 through the neuropilin-1/Smad3 signaling pathway in myofibroblasts. Subcutaneous injection of galectin-1 into wound areas accelerated the healing of general and pathological (streptozotocin-induced diabetes mellitus) wounds and decreased the mortality of diabetic mice with skin wounds. These findings indicate that galectin-1 is a key regulator of wound repair that has therapeutic potential for pathological or imperfect wound healing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据