4.7 Article

Quaking, an RNA-Binding Protein, Is a Critical Regulator of Vascular Smooth Muscle Cell Phenotype

期刊

CIRCULATION RESEARCH
卷 113, 期 9, 页码 1065-1075

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/CIRCRESAHA.113.301302

关键词

alternative splicing; differentiation; myocardin; Qk; restenosis; RNA-binding protein Quaking; vascular injury; vascular smooth muscle cells

资金

  1. Netherlands Heart Foundation [M93.001, 2001-D0-32, 2003T201]
  2. Netherlands Institute of Regenerative Medicine
  3. Dutch Kidney Foundation [NSN C 09.2329]
  4. European Community [LSHM-CT-2003-503254]

向作者/读者索取更多资源

Rationale: RNA-binding proteins are critical post-transcriptional regulators of RNA and can influence pre-mRNA splicing, RNA localization, and stability. The RNA-binding protein Quaking (QKI) is essential for embryonic blood vessel development. However, the role of QKI in the adult vasculature, and in particular in vascular smooth muscle cells (VSMCs), is currently unknown. Objective: We sought to determine the role of QKI in regulating adult VSMC function and plasticity. Methods and Results: We identified that QKI is highly expressed by neointimal VSMCs of human coronary restenotic lesions, but not in healthy vessels. In a mouse model of vascular injury, we observed reduced neointima hyperplasia in Quaking viable mice, which have decreased QKI expression. Concordantly, abrogation of QKI attenuated fibroproliferative properties of VSMCs, while potently inducing contractile apparatus protein expression, rendering noncontractile VSMCs with the capacity to contract. We identified that QKI localizes to the spliceosome, where it interacts with the myocardin pre-mRNA and regulates the splicing of alternative exon 2a. This post-transcriptional event impacts the Myocd_v3/Myocd_v1 mRNA balance and can be modulated by mutating the quaking response element in exon 2a of myocardin. Furthermore, we identified that arterial damage triggers myocardin alternative splicing and is tightly coupled with changes in the expression levels of distinct QKI isoforms. Conclusions: We propose that QKI is a central regulator of VSMC phenotypic plasticity and that intervention in QKI activity can ameliorate pathogenic, fibroproliferative responses to vascular injury.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据