4.7 Article

Activation of Vascular Smooth Muscle Parathyroid Hormone Receptor Inhibits Wnt/β-Catenin Signaling and Aortic Fibrosis in Diabetic Arteriosclerosis

期刊

CIRCULATION RESEARCH
卷 107, 期 2, 页码 271-U222

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/CIRCRESAHA.110.219899

关键词

arteriosclerosis; beta-catenin; diabetes; parathyroid hormone; Wnt

资金

  1. NHLBI NIH HHS [R01 HL088651-03, R01 HL088651, R01 HL081138, R01 HL069229-09, R01 HL069229-10, R01 HL069229, HL081138, R01 HL088651-04, HL069229, R01 HL081138-05, R01 HL081138-04] Funding Source: Medline

向作者/读者索取更多资源

Rationale: Vascular fibrosis and calcification contribute to diabetic arteriosclerosis, impairing Windkessel physiology necessary for distal tissue perfusion. Wnt family members, upregulated in arteries by the low-grade inflammation of diabesity, stimulate type I collagen expression and osteogenic mineralization of mesenchymal progenitors via beta-catenin. Conversely, parathyroid hormone (PTH) inhibits aortic calcification in low-density lipoprotein receptor (LDLR)-deficient mice fed high fat diabetogenic diets (HFD). Objective: We sought to determine the impact of vascular PTH receptor (PTH1R) activity on arteriosclerotic Wnt/beta-catenin signaling in vitro and in vivo. We generated SM-caPTH1R transgenic mice, a model in which the constitutively active PTH1R variant H223R (caPTH1R) is expressed only in the vasculature. Methods and Results: The caPTH1R inhibited Wnt/beta-catenin signaling, collagen production, and vascular smooth muscle cell proliferation and calcification in vitro. Transgenic SM-caPTH1R; LDLR+/- mice fed HFD develop diabesity, with no improvements in fasting serum glucose, cholesterol, weight, body composition, or bone mass versus LDLR+/- siblings. SM-caPTH1R downregulated aortic Col1A1, Runx2, and Nox1 expression without altering TNF, Msx2, Wnt7a/b, or Nox4. The SM-caPTH1R transgene decreased aortic beta-catenin protein accumulation and signaling in diabetic LDLR+/- mice. Levels of aortic superoxide (a precursor of peroxide that activates pro-matrix metalloproteinase 9 and osteogenic signaling in vascular smooth muscle cells) were suppressed by the SM-caPTH1R transgene. Aortic calcification, collagen accumulation, and wall thickness were concomitantly reduced, enhancing vessel distensibility. Conclusions: Cell-autonomous vascular smooth muscle cell PTH1R activity inhibits arteriosclerotic Wnt/beta-catenin signaling and reduces vascular oxidative stress, thus limiting aortic type I collagen and calcium accrual in diabetic LDLR-deficient mice. (Circ Res. 2010; 107:271-282.)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据