4.2 Review

Pulsed metal organic chemical vapor deposition of InAlN-based heterostructures and its application in electronic devices

期刊

CHINESE SCIENCE BULLETIN
卷 59, 期 12, 页码 1228-1234

出版社

SCIENCE PRESS
DOI: 10.1007/s11434-014-0145-5

关键词

InAlN based heterostructures; Pulsed metal organic chemical vapor deposition; Electronic devices; Semiconductor growth and characterization

资金

  1. National Natural Science Foundation of China [60736033, 60676048]

向作者/读者索取更多资源

As a promising group III-nitride semiconductor material, InAlN ternary alloy has been attracted increasing interest and widespread research efforts for optoelectronic and electronic applications in the last 5 years. Following a literature survey of current status and progress of InAlN-related studies, this paper provides a brief review of some recent developments in InAlN-related III-nitride research in Xidian University, which focuses on innovation of the material growth approach and device structure for electronic applications. A novel pulsed metal organic chemical vapor deposition (PMOCVD) was first adopted to epitaxy of InAlN-related heterostructures, and excellent crystalline and electrical properties were obtained. Furthermore, the first domestic InAlN-based high-electron mobility transistor (HEMT) was fabricated. Relying on the PMOCVD in combination with special GaN channel growth approach, high-quality InAlN/GaN double-channel HEMTs were successfully achieved for the first time. Additionally, other potentiality regarding to AlGaN channel was demonstrated through the successful realization of nearly lattice-matched InAlN/AlGaN heterostructures suitable for high-voltage switching applications. Finally, some advanced device structures and technologies including excellent work from several research groups around the world are summarized based on recent publications, showing the promising prospect of InAlN alloy to push group III-nitride electronic device performance even further.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据