4.2 Review

Computational thermodynamics, computational kinetics, and materials design

期刊

CHINESE SCIENCE BULLETIN
卷 59, 期 15, 页码 1662-1671

出版社

SCIENCE PRESS
DOI: 10.1007/s11434-014-0219-4

关键词

Computational thermodynamics; Computational kinetics; CALPHAD; First-principles calculations; Database; Materials design

资金

  1. Oriental Scholarship
  2. Shanghai Municipal Education Commission [085]

向作者/读者索取更多资源

Computational thermodynamics, known as CALPHAD method when dawned in 1950s, aimed at coupling phase diagrams with thermochemistry by computational techniques. It eventually evolves toward kinetic simulations integrated with thermodynamic calculations, i.e., computational kinetics, including diffusion-controlled phase transformation, precipitation simulation, and phase-field simulation. In the meantime, thermodynamic, mobility, and physical property databases for multi-component and multi-phase materials, served as basic knowledge for materials design, are critically evaluated by CALPHAD approach combining key experiments, first-principles calculations, statistic methods, and empirical theories. The combination of these computational techniques with their conjugated databases makes it possible to simulate phase transformations and predict the microstructure evolution in real materials in a foreseeable future. Further links to microand macro-scale simulations lead to a multi-scale computational framework, and aid the search for the quantitative relations among chemistry, process, microstructures, and materials properties in order to accelerate materials development and deployment. This is a new route of materials and process design pursued by Integrated Computational Materials Engineering (ICME) and Materials Genome Initiative (MGI). This article presents a review on the basic theories and applications, the state of the art and perspective of computational thermodynamics and kinetics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据