4.5 Article

Photo-Crosslinking Induced Geometric Restriction Controls the Self-Assembly of Diphenylalanine Based Peptides

期刊

CHINESE PHYSICS LETTERS
卷 28, 期 2, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0256-307X/28/2/028702

关键词

-

资金

  1. National Natural Science Foundation of China [10834002, 10904064, 11074115]
  2. Natural Science Foundation of Jiangsu Province [BK2009008]

向作者/读者索取更多资源

The diphenylalanine (FF) motif has been widely used in the design of peptides that are capable of forming various ordered structures, such as nanotubes, nanospheres and hydrogels. In these assemblies, FF based peptides adopt an antiparallel structure and are stabilized by pi - pi stacking among the phenyl groups. Here we show that assembly of FF-based peptides can be controlled by their geometric restrictions. Using tripeptide FFY (L-Phe-L-Phe-L-Tyr) as an example, we demonstrate that photo-crosslinking of C-terminal tyrosine can impose a geometric restriction to the formation of an antiparallel structure, leading to a structural change of the assemblies from nanosphere to amorphous. This finding is confirmed using far-UV circular dichroism, Fourier transform infrared spectroscopy and atomic force microscopy. Based on such a mechanism, we are able to control the gel-sol transition of Fmoc-FFY using the geometric restriction induced by photo-crosslinking of C-terminal tyrosine groups. We believe that geometric restriction should be considered as an important factor in the design of peptide-based materials. It can also be implemented as a useful strategy for the construction of environment-responsive smart materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据