4.7 Article

IL-27 Is Elevated in Patients With COPD and Patients With Pulmonary TB and Induces Human Bronchial Epithelial Cells to Produce CXCL10

期刊

CHEST
卷 141, 期 1, 页码 121-130

出版社

ELSEVIER SCIENCE BV
DOI: 10.1378/chest.10-3297

关键词

-

资金

  1. National Natural Science Foundation grants of China [81000711]

向作者/读者索取更多资源

Background: The role of IL-27 in the pathogenesis of airway inflammatory diseases remains elusive. We, therefore, have studied its concentrations in the sputum and plasma of patients with COPD and patients with pulmonary TB (PTB), and further investigated the mechanism-of-action effects of IL-27 on bronchial epithelial cells in vitro. Methods: Human bronchial epithelial cells grown on air-liquid interface culture were activated by IL-27, alone, or in combination with other inflammatory cytokines in the presence or absence of various signaling molecule inhibitors. The expression of CXCL10 was detected by reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay (ELISA). The underlying signaling pathways were studied by intracellular staining using flow cytometry, Western blot, ELISA, or siRNA. Results: Significantly higher sputum and plasma concentrations of IL-27 were found in patients with COPD (n = 34; P < .01 and P < .001, respectively) or patients with PTB (n = 31; P < .01 and P <.001, respectively) than in healthy control subjects (n = 48). Sputum, but not plasma, IL-27 levels in patients with COPD correlated negatively with FEV1 (r = -0.51, P < .01). Sputum, but not plasma, IL-27 in patients with PTB correlated positively with mycobacterial load in sputum (r = 0.48, P < .05). Further in vitro studies demonstrated that IL-27 could induce gene and protein expression of CXCL10 in bronchial epithelial cells, which was regulated by the activation of the phosphatidylinositol 3-OH kinase (PI3K)-Akt signaling pathway. Conclusions: The production of IL-27 is related to the pathogenesis of COPD and PTB, and IL-27 induces the expression of CXCL10 in bronchial epithelial cells through the activation of the PI3K-Akt signaling pathway. CHEST 2012; 141(1):121-130

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据