4.7 Article

Satellite-derived Digital Elevation Model (DEM) selection, preparation and correction for hydrodynamic modelling in large, low-gradient and data-sparse catchments

期刊

JOURNAL OF HYDROLOGY
卷 524, 期 -, 页码 489-506

出版社

ELSEVIER
DOI: 10.1016/j.jhydrol.2015.02.049

关键词

Digital elevation models; Hydrodynamic modelling; DEM preparation; Spatial resolution; Low-gradient river systems

资金

  1. University of Queensland (UQ)
  2. CSIRO
  3. Australian Postgraduate Award
  4. School of Geography, Planning and Environmental Management (UQ)

向作者/读者索取更多资源

Digital Elevation Models (DEMs) that accurately replicate both landscape form and processes are critical to support modelling of environmental processes. Topographic accuracy, methods of preparation and grid size are all important for hydrodynamic models to efficiently replicate flow processes. In remote and data-scarce regions, high resolution DEMs are often not available and therefore it is necessary to evaluate lower resolution data such as the Shuttle Radar Topography Mission (SRTM) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) for use within hydrodynamic models. This paper does this in three ways: (i) assessing point accuracy and geometric co-registration error of the original DEMs; (ii) quantifying the effects of DEM preparation methods (vegetation smoothed and hydrologically-corrected) on hydrodynamic modelling relative accuracy; and (iii) quantifying the effect of the hydrodynamic model grid size (30-2000 m) and the associated relative computational costs (run time) on relative accuracy in model outputs. We initially evaluated the accuracy of the original SRTM (similar to 30 m) seamless C-band DEM (SRTM DEM) and second generation products from the ASTER (ASTER GDEM) against registered survey marks and altimetry data points from the Ice, Cloud, and land Elevation Satellite (ICESat). SRTM DEM (RMSE = 3.25 m,) had higher accuracy than ASTER GDEM (RMSE = 7.43 m). Based on these results, the original version of SRTM DEM, the ASTER GDEM along with vegetation smoothed and hydrologically corrected versions were prepared and used to simulate three flood events along a 200 km stretch of the low-gradient Thompson River, in arid Australia (using five metrics: peak discharge, peak height, travel time, terminal water storage and flood extent). The hydrologically corrected DEMs performed best across these metrics in simulating floods compared with vegetation smoothed DEMs and original DEMs. The response of model performance to grid size was non-linear and while the smaller grid sizes (4120 m) improved the hydrodynamic model results, these offered only slight improvements at very significant computational costs compared to grid size of 120 m, with grid sizes 250 m and greater decreasing in model accuracy. This study highlights the important impact that the quality of the underlying DEM has, and in particular how sensitive hydrodynamic models are to preparation methods and how important vegetation smoothing and hydrological correction of the base topographic data for modelling floods in low-gradient and multi-channel environments. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据