4.6 Article

Understanding the Mechanisms of Unusually Fast H-H, C-H, and C-C Bond Reductive Eliminations from Gold(III) Complexes

期刊

CHEMISTRY-A EUROPEAN JOURNAL
卷 20, 期 45, 页码 14650-14658

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.201403867

关键词

computational chemistry; gold catalysis; kinetic isotope effect; reductive elimination; tunneling

资金

  1. DST
  2. INSA
  3. CSIR

向作者/读者索取更多资源

Carbon-carbon bond reductive elimination from gold(III) complexes are known to be very slow and require high temperatures. Recently, Toste and co-workers have demonstrated extremely rapid CC reductive elimination from cis-[AuPPh3(4-F-C6H4)(2)Cl] even at low temperatures. We have performed DFT calculations to understand the mechanistic pathway for these novel reductive elimination reactions. Direct dynamics calculations inclusive of quantum mechanical tunneling showed significant contribution of heavy-atom tunneling (>25%) at the experimental reaction temperatures. In the absence of any competing side reactions, such as phosphine exchange/dissociation, the complex cis-[Au(PPh3)(2)(4-F-C6H4)(2)](+) was shown to undergo ultrafast reductive elimination. Calculations also revealed very facile, concerted mechanisms for HH, CH, and CC bond reductive elimination from a range of neutral and cationic gold(III) centers, except for the coupling of sp(3) carbon atoms. Metal-carbon bond strengths in the transition states that originate from attractive orbital interactions control the feasibility of a concerted reductive elimination mechanism. Calculations for the formation of methane from complex cis-[AuPPh3(H)CH3](+) predict that at -52 degrees C, about 82% of the reaction occurs by hydrogen-atom tunneling. Tunneling leads to subtle effects on the reaction rates, such as large primary kinetic isotope effects (KIE) and a strong violation of the rule of the geometric mean of the primary and secondary KIEs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据