4.6 Article

An Artificial Estrogen Receptor through Combinatorial Imprinting

期刊

CHEMISTRY-A EUROPEAN JOURNAL
卷 18, 期 46, 页码 14773-14783

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.201201428

关键词

endocrine disruptor; estrogen; imprinting; receptors; recognition; water treatment

资金

  1. European Commission [FP7 - NMP4-SL-2009-226524]

向作者/读者索取更多资源

Polymeric sorbents targeting endocrine-disrupting estrogen active compounds (EAC) were prepared by terpolymer imprinting using 17 beta-estradiol (E2) as template. From a group of eight functional monomers representing Bronsted acids, bases, hydrogen-bond donors and acceptors, as well as pi-interacting monomers, a terpolymer library that comprises all possible binary combinations of the functional monomers was prepared. Binding tests revealed that imprinted polymers exhibit a markedly higher affinity for E2 compared to nonimprinted polymers (NIPs) or polymers prepared by using single functional monomers. A combination of methacrylic acid (MAA) and p-vinylbenzoic acid offered a particularly promising lead polymer, displaying an imprinting factor of 17 versus 2.4 for a benchmark polymer prepared by using only MAA as functional monomer. The saturation capacities ascribed to imprinted sites were four to five times higher for this polymer compared to previously reported imprinted polymers. NMR titrations and molecular dynamics simulations corroborated these results, indicating an orthogonal preference of the two functional monomers with respect to the E2 3-OH and 17-OH groups. The optimized polymer exhibited a retentivity for EACs that correlates with their inhibitory effect on the natural receptor. By using the optimized molecularly imprinted polymers (MIPs) in a model water-purification system, they were capable of completely removing ppb levels of a small group of EACs from water. This is in contrast to the performance of nonimprinted polymers and well-established sorbents for water purification (e.g., active carbon), which still contained detectable amounts of the compounds after treatment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据