4.8 Article

Determination and quantification of the local environments in stoichiometric and defect jarosite by solid-state 2H NMR spectroscopy

期刊

CHEMISTRY OF MATERIALS
卷 20, 期 6, 页码 2234-2241

出版社

AMER CHEMICAL SOC
DOI: 10.1021/cm702523d

关键词

-

向作者/读者索取更多资源

The nature and concentrations of the local environments in a series of deuterated jarosite (nominally AFe(3)(SO4)(2)(OD)(6) with A = K, Na, and D3O) samples with different levels of iron and cation vacancies have been determined by H-2 MAS NMR spectroscopy at ambient temperatures. Three different local deuteron environments, Fe2OD, FeOD2, and D2O/D3O+, can be separated based on their very different Fermi contact shifts of delta approximate to 237, 70, and 0 ppm, respectively. The FeOD2 group arises from the charge, compensation of the Fe3+ vacancies, allowing the concentrations of the vacancies to be readily determined. Analysis of the 2 H quadrupole interaction indicates that the FeOD2 groups are mobile, undergoing rapid 180 degrees flips on the NMR time scale; the D2O/D3O+ species (located on the A sites) undergo close to isotropic motion, whereas the Fe20D groups are rigid and are hydrogen-bonded to nearby sulfate 0 atoms, with a (Fe)OD-O(S) distance of 2.79(4) angstrom. No evidence for the intrinsic protonation reaction Fe2OH + H3O+ -> Fe2OH2 + H2O is found in the hydronium jarosite, suggesting that this mechanism is not the cause of the anomalous magnetic behavior of this material. The results illustrate that 2 H MAS NMR spectroscopy is an excellent probe of the local environments and defects, on the atomic/molecular level, providing information that is complementary to diffraction techniques and that will help to rationalize the magnetic properties of these materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据