4.7 Article

Evaluation of cellular influences caused by calcium carbonate nanoparticles

期刊

CHEMICO-BIOLOGICAL INTERACTIONS
卷 210, 期 -, 页码 64-76

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.cbi.2013.12.013

关键词

Calcium carbonate; Nanoparticle; Culture cell; Cellular influence

资金

  1. New Energy and Industrial Technology Development Organization [P06041]

向作者/读者索取更多资源

The cellular effects of calcium carbonate (CaCO3) nanoparticles were evaluated. Three kinds of CaCO3 nanoparticles were employed in our examinations. One of the types of CaCO3 nanoparticles was highly soluble. And solubility of another type of CaCO3 nanoparticle was lower. A stable CaCO3 nanoparticle medium dispersion was prepared and applied to human lung carcinoma A549 cells and human keratinocyte HaCaT cells. Then, mitochondrial activity, cell membrane damage, colony formation ability, DNA injury, induction of oxidative stress, and apoptosis were evaluated. Although the influences of CaCO3 nanoparticles on mitochondrial activity and cell membrane damage were small, soluble CaCO3 nanoparticles exerted some cellular influences. Soluble CaCO3 nanoparticles also induced a cell morphological change. Colony formation was inhibited by CaCO3 nanoparticle exposure. In particular, soluble CaCO3 nanoparticles completely inhibited colony formation. The influence on intracellular the reactive oxygen species (ROS) level was small. Soluble CaCO3 nanoparticles caused an increase in C/EBP-homologous protein (CHOP) expression and the activation of caspase-3. Moreover, CaCO3 exposure increased intracellular the Ca2+ level and activated calpain. These results suggest that cellular the influences of CaCO3 nanopartides are mainly caused by intracellular calcium release and subsequently disrupt the effect of calcium signaling. In conclusion, there is possibility that soluble CaCO3 nanoparticles induce cellular influences such as a cell morphological change. Cellular influence of CaCO3 nanoparticles is caused by intracellular calcium release. If inhaled CaCO3 nanoparticles have the potential to influence cellular events. However, the effect might be not severe because calcium is omnipresent element in cell. (C) 2014 Elsevier Ireland Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据