4.8 Review

Constructing molecular complexity and diversity: total synthesis of natural products of biological and medicinal importance

期刊

CHEMICAL SOCIETY REVIEWS
卷 41, 期 15, 页码 5185-5238

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2cs35116a

关键词

-

资金

  1. National Institutes of Health (USA)
  2. National Science Foundation
  3. Skaggs Institute for Chemical Biology
  4. A*STAR Singapore
  5. NSF
  6. Alexander von Humboldt-Foundation
  7. pharmaceutical and biotechnology sectors
  8. NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES [R01AI055475] Funding Source: NIH RePORTER

向作者/读者索取更多资源

The advent of organic synthesis and the understanding of the molecule as they occurred in the nineteenth century and were refined in the twentieth century constitute two of the most profound scientific developments of all time. These discoveries set in motion a revolution that shaped the landscape of the molecular sciences and changed the world. Organic synthesis played a major role in this revolution through its ability to construct the molecules of the living world and others like them whose primary element is carbon. Although the early beginnings of organic synthesis came about serendipitously, organic chemists quickly recognized its potential and moved decisively to advance and exploit it in myriad ways for the benefit of mankind. Indeed, from the early days of the synthesis of urea and the construction of the first carbon-carbon bond, the art of organic synthesis improved to impressively high levels of sophistication. Through its practice, today chemists can synthesize organic molecules-natural and designed-of all types of structural motifs and for all intents and purposes. The endeavor of constructing natural products-the organic molecules of nature-is justly called both a creative art and an exact science. Often called simply total synthesis, the replication of nature's molecules in the laboratory reflects and symbolizes the state of the art of synthesis in general. In the last few decades a surge in total synthesis endeavors around the world led to a remarkable collection of achievements that covers a wide ranging landscape of molecular complexity and diversity. In this article, we present highlights of some of our contributions in the field of total synthesis of natural products of biological and medicinal importance. For perspective, we also provide a listing of selected examples of additional natural products synthesized in other laboratories around the world over the last few years.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Review Chemistry, Multidisciplinary

Revolutionizing the structural design and determination of covalent-organic frameworks: principles, methods, and techniques

Yikuan Liu, Xiaona Liu, An Su, Chengtao Gong, Shenwei Chen, Liwei Xia, Chengwei Zhang, Xiaohuan Tao, Yue Li, Yonghe Li, Tulai Sun, Mengru Bu, Wei Shao, Jia Zhao, Xiaonian Li, Yongwu Peng, Peng Guo, Yu Han, Yihan Zhu

Summary: Covalent organic frameworks are crystalline porous materials with designable structures and functions, which can acquire multifunctionalities and have versatile applications in gas separation/storage, catalysis, and optoelectronic devices.

CHEMICAL SOCIETY REVIEWS (2024)

Review Chemistry, Multidisciplinary

Nucleic acid degradation as barrier to gene delivery: a guide to understand and overcome nuclease activity

Heyang Zhang, Jo Vandesompele, Kevin Braeckmans, Stefaan C. De Smedt, Katrien Remaut

Summary: Gene therapy has the potential to revolutionize the treatment of inherited and acquired diseases, but its success rate is currently limited. This review focuses on the obstacles faced by gene therapies in the human body, such as nucleic acid degradation by abundant nucleases, and discusses strategies to reduce degradation and methods to assess nucleic acid integrity.

CHEMICAL SOCIETY REVIEWS (2024)

Review Chemistry, Multidisciplinary

Boryl-substituted low-valent heavy group 14 compounds

Chenxi Duan, Chunming Cui

Summary: Low valent group 14 compounds with diazaborolyl substituents exhibit unique structures and reactivity due to the combination of sigma-electron donation and steric hindrance. The modulation of the HOMO-LUMO gap by the diazaborolyl substituents results in novel reaction patterns in the activation of small molecules and inert chemical bonds.

CHEMICAL SOCIETY REVIEWS (2024)

Review Chemistry, Multidisciplinary

Reactivity of metal-oxo clusters towards biomolecules: from discrete polyoxometalates to metal-organic frameworks

David E. Salazar Marcano, Nada D. Savic, Kilian Declerck, Shorok A. M. Abdelhameed, Tatjana N. Parac-Vogt

Summary: Metal-oxo clusters have great potential in various fields and can react with biomolecules, making them promising for applications in disease treatment and energy development. They can also be used in the development of inorganic drugs and bioanalytical tools.

CHEMICAL SOCIETY REVIEWS (2024)

Review Chemistry, Multidisciplinary

Heterometallic cages: synthesis and applications

Lana K. Moree, Logan A. V. Faulkner, James D. Crowley

Summary: In this tutorial review, the general methods for synthesizing heterometallic metallosupramolecular architectures (MSAs), specifically heterometallic cages, are examined. The intrinsic properties and potential applications of these cages as host-guest systems and reaction catalysts are discussed.

CHEMICAL SOCIETY REVIEWS (2024)