4.5 Article

Diffusion across proton collecting surfaces

期刊

CHEMICAL PHYSICS
卷 370, 期 1-3, 页码 232-237

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.chemphys.2009.11.004

关键词

Diffusion; Proton collecting surface; Steady-state rate

资金

  1. United States-Israel Binational Science Foundation (BSF) [2006067]
  2. Minerva Gesellschaft fur die Forschung, Munchen, FRG
  3. Division Of Research On Learning
  4. Directorate for STEM Education [2006067] Funding Source: National Science Foundation

向作者/读者索取更多资源

A model for a proton collecting apparatus on a protein surface includes a ring-shaped collecting domain on which reversible receptors are scattered. These transport a proton by surface diffusion, until it reaches a central orifice where it is absorbed. Mathematically, this scenario is represented approximately by two-dimensional diffusion on the ring, with steady-state rate coefficients for adsorption/desorption of protons from the bulk (which depend on the bulk diffusion coefficient), and a boundary condition mimicking an irreversible reaction on the orifice perimeter. The ensuing differential equation is of the modified Bessel type, and can therefore be solved analytically in terms of modified Bessel functions. The most general solution involves a reflecting boundary condition on the outer perimeter of the ring, and a radiation one on its inner perimeter. This solution admits numerous special cases, such as when the ring becomes infinite, the inner boundary absorbing, or some parameter small or large. These various limits are discussed, as well as possible implications to experiment. (C) 2009 Elsevier B. V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Chemistry, Physical

Protonated Water Dimer on Benzene: Standing Eigen or Crouching Zundel?

Huan Wang, Noam Agmon

JOURNAL OF PHYSICAL CHEMISTRY B (2015)

Article Chemistry, Physical

The Hole in the Barrel: Water Exchange at the GFP Chromophore

Ai Shinobu, Noam Agmon

JOURNAL OF PHYSICAL CHEMISTRY B (2015)

Review Chemistry, Multidisciplinary

Protons and Hydroxide Ions in Aqueous Systems

Noam Agmon, Huib J. Bakker, R. Kramer Campen, Richard H. Henchman, Peter Pohl, Sylvie Roke, Martin Thaemer, Ali Hassanali

CHEMICAL REVIEWS (2016)

Article Chemistry, Physical

Proton Wire Dynamics in the Green Fluorescent Protein

Ai Shinobu, Noam Agmon

JOURNAL OF CHEMICAL THEORY AND COMPUTATION (2017)

Article Chemistry, Physical

Structure and Spectroscopy of Hydrated Sodium Ions at Different Temperatures and the Cluster Stability Rules

Jean Jules Fifen, Noam Agmon

JOURNAL OF CHEMICAL THEORY AND COMPUTATION (2016)

Article Chemistry, Physical

Complete Assignment of the Infrared Spectrum of the Gas-Phase Protonated Ammonia Dimer

Huan Wang, Noam Agmon

JOURNAL OF PHYSICAL CHEMISTRY A (2016)

Article Chemistry, Physical

Reversible Excited-State Proton Geminate Recombination: Revisited

Ron Simkovitch, Dina Pines, Noam Agmon, Ehud Pines, Dan Huppert

JOURNAL OF PHYSICAL CHEMISTRY B (2016)

News Item Chemistry, Multidisciplinary

INFRARED SPECTROSCOPY The acid test for water structure

Noam Agmon

NATURE CHEMISTRY (2016)

Editorial Material Chemistry, Multidisciplinary

Charge Transfer in Proteins: In Celebration of Hemi Gutman's 80th Birthday

Ran Friedman, Noam Agmon

ISRAEL JOURNAL OF CHEMISTRY (2017)

Article Chemistry, Physical

Structure, spectroscopy, and dynamics of the phenol-(water)2 cluster at low and high temperatures

Nagaprasad Reddy Samala, Noam Agmon

JOURNAL OF CHEMICAL PHYSICS (2017)

Article Chemistry, Multidisciplinary

Isoelectronic Theory for Cationic Radii

Noam Agmon

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2017)

Article Multidisciplinary Sciences

Origin of proton affinity to membrane/water interfaces

Ewald Weichselbaum, Maria Osterbauer, Denis G. Knyazev, Oleg V. Batishchev, Sergey A. Akimov, Trung Hai Nguyen, Chao Zhang, Gunther Knor, Noam Agmon, Paolo Carloni, Peter Pohl

SCIENTIFIC REPORTS (2017)

Article Chemistry, Physical

The protonated water trimer and its giant Fermi resonances

Nagaprasad Reddy Samala, Noam Agmon

CHEMICAL PHYSICS (2018)

Article Chemistry, Physical

Ionic radii of hydrated sodium cation from QTAIM

Jean Jules Fifen, Noam Agmon

JOURNAL OF CHEMICAL PHYSICS (2019)

Article Chemistry, Physical

Reinvestigation of the Infrared Spectrum of the Gas-Phase Protonated Water Tetramer

Huan Wang, Noam Agmon

JOURNAL OF PHYSICAL CHEMISTRY A (2017)

Article Chemistry, Physical

Data driven analysis of aromatase inhibitors through machine learning, database mining and library generation

Jameel Ahmed Bhutto, Zhonglin He, Jawayria Najeeb, Sumaira Naeem, Eman A. Mahmoud, Hosam O. Elansary

Summary: Designing novel drugs using data-driven and virtual screening approaches, such as machine learning and data mining, is a popular research topic in the pharmaceutical industry. In this study, ML models were trained using data collected from academic research articles, and molecular descriptors were utilized. The best ML models were selected and optimized to identify potential compounds for aromatase inhibitors. These models accurately predicted the inhibition values of compounds in a database, and new compounds were designed based on the predictions. Overall, this study demonstrates the potential significance of data-driven and virtual screening approaches in pharmaceutical research.

CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Hydrogen atom/molecule adsorption on 2D metallic porphyrin: A first-principles study

Raphael M. Tromer, Isaac M. Felix, Levi C. Felix, Leonardo D. Machado, Cristiano F. Woellner, Douglas S. Galvao

Summary: This study investigates the adsorption mechanisms of hydrogen atoms and molecules on 2D metallic porphyrins using DFT simulations. The results show that hydrogen atoms are chemisorbed while hydrogen molecules are physisorbed. Vanadium and chromium embedded porphyrins exhibit the highest maximum adsorption energies for hydrogen atoms, while scandium embedded porphyrins exhibit the highest maximum adsorption energy for hydrogen molecules. Furthermore, charge transfer is minimal for physisorption and significant for chemisorption. Uniaxial strain has minimal effects on the adsorption properties of 2D metallic porphyrins.

CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

How genuine is the quadruple bond in AeF- (Ae = Be-Ba)?

Ankur Kanti Guha

Summary: This study examines the genuineness of a proposed quadruple bond in AeF(-) (Ae = Be-Ba) using electron localization function (ELF). The ELF analysis reveals the presence of a disynaptic Ae-F basin with electron integration much lower than expected for a quadruple bond. These bonds are classified as Charge-Shift bonds due to the excess kinetic energy in the bonding basins.

CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Rotating single molecule-based devices: Single-spin switching, negative differential electrical and thermoelectric resistance

X. F. Yang, Y. J. Dong, H. L. Yu, X. X. Tao, Y. S. Liu

Summary: This study investigates the spin-polarized transport properties of an iron-complex molecule sandwiched between two ferromagnetic zigzag-edged graphene nanoribbon electrodes. The results show the presence of single-spin switching effect, perfect spin filtering effect, and negative differential electrical and thermoelectric resistance in the molecular device. These findings suggest the potential applications of iron-complex molecular devices in the next-generation spin electric and thermoelectric devices.

CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

QM:QM studies on the mechanisms of interaction of alkenes with zeolitic Brønsted sites in H-FER

Zhengwei Yan, Tianchu Zhao, Qinghua Ren

Summary: In this study, the chemically accurate hybrid MP2:(PBE + D2) + Delta CCSD(T) method was used to investigate the transition states of alkenes reacting with the Al(2)O(7) Bronsted acid site in H-ferrierite (H-FER). The results showed that the MP2 + Delta CC intrinsic energy barriers were higher than the corresponding PBE + D2 intrinsic energy barriers, and the relative energies of the transition states decreased with the increase of the carbon number. For the reactant of propene, the conversion into 2-propoxide had a lower energy barrier compared to the conversion into 1-propoxide.

CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

First-principles calculation of structural, electronic, and superconducting properties of PuHx, 6 ≤ x ≤ 10

Yutong Yao, Qihang Liang, Fawei Zheng, Menglei Li

Summary: In this study, first-principle calculations were used to investigate the structural, electronic, and superconducting properties of hydrogen-rich plutonium polyhydrides under high pressures. The results showed that these systems exhibited metallic behavior, with a low superconducting transition temperature. Additionally, it was found that the f electrons in plutonium had a detrimental effect on the superconductivity in these polyhydrides.

CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Controlling placement of quantum states in phosphorene nanoribbons using ligands

Ryan Lambert, Arthur C. Reber, Turbasu Sengupta, Shiv N. Khanna

Summary: This study demonstrates how the placement of terminal ligands and the deposition of alkali atoms control the band gap energy and placement of band edges in phosphorene nanoribbons. The work function is significantly affected by the induced dipole of the terminal groups, and the band gap can be manipulated by adding alkali atoms on the surface.

CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Intermolecular interactions between nucleoside, amino acid, and water molecules probed by ultraviolet photodissociation in the gas phase

Daiya Nagai, Akimasa Fujihara

Summary: The effects of intermolecular interactions on the reactivity of hydrogen-bonded clusters of adenosine and tryptophan in the gas phase were investigated using water adsorption and ultraviolet photoexcitation. The results showed that water adsorption weakened the intermolecular interactions between adenosine and tryptophan in the clusters and inhibited the photoinduced glycosidic bond cleavage of adenosine.

CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Theoretical insights into the interplay between Sb vacancy and Fe on magnetic and optoelectronic properties of Fe-doped antimonene

Xiaoping Han, Maamar Benkraouda, Zhiyuan Wang, Zongsheng Zhang, Noureddine Amrane

Summary: This study investigates the effects of Fe substitution and its complex with Sb vacancy on the magnetic properties and optoelectronic functionalities of antimonene. It is found that Fe substitution induces magnetism and promotes optical absorption, while further incorporation of VSb stabilizes Fe dopant and enhances both magnetism and photoabsorption. This work has implications in developing spintronic and optoelectronic applications.

CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Ultrafast electron transfer of different vibronic states in flavodoxin

Yifei Zhang, Xi Wang, Na Liu, Faming Lu

Summary: Understanding the ultrafast electron transfer (ET) processes involving various vibronic excitation in biological systems is challenging. This study investigated the excitation dependence of the photo-induced ET dynamics by selecting mutants in flavodoxin with different ET lifetimes. The results showed that increasing excitation energies resulted in higher vibrational excitation in products for the ultrafast ET processes, but no dependence was found for slower ET due to complete vibrational relaxation.

CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Catalytic performance of metal chloride for dehydrochlorination of trichloroethane

Xiang Ge, Jigang Zhao, Xiangqian Yuan, Haitao Shen, Shiyong Wu

Summary: This study investigated the catalytic splitting of 1,1,2-TCE and found that CsCl showed the best catalytic effect. Characterization results of CO2-TPD and NH3-TPD suggested that alkaline sites were beneficial for the selective generation of VDC.

CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Nitrogen-Doped Single-Walled Carbon Nanotubes by Floating-Catalyst CVD Process

Theerapol Thurakitseree, Arunothai Rattanachata, Hideki Nakajima, Somruthai Phothiphiphit, Surasak Kuimalee, Pimpun Suknet

Summary: Thin film nitrogen-doped SWCNTs were synthesized using floating-catalyst chemical vapor deposition. The incorporation of low levels of nitrogen into the carbon network resulted in predominance of substitutional and pyridinic nitrogens, changing the electronic structure of the SWCNT film to n-type doping. X-ray absorption spectroscopy revealed the localized structures of carbon and nitrogen bonding environments. The formation of a p-n junction was observed from the I-V characteristic of the N-doped SWCNT heterojunction diode, indicating n-type behavior.

CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Effects of the third body (O and N) on the recombination of molecular nitrogen using quasi-classical trajectory methods

Chaithanya Kondur, Kelly A. Stephani

Summary: This study investigates the complex dynamics involved in the recombination of atomic nitrogen to form molecular nitrogen and explores the impact of a third body on the recombination dynamics. The results show that the recombination probability is highest for collisions with low translational energies and low time lags. Additionally, a novel rate coefficient expression is developed to evaluate low temperature recombination rate coefficients at a lower computational cost.

CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Elucidating state-specific dynamics of 1La and 1Lb in cyanoindole derivatives using UV/Vis pump IR detection

Bingyao Wang, Zhongneng Zhou, Qin Zhang, Bo Dong, Xiu-Wen Kang, Bei Ding

Summary: In this study, two well-separated excited-state vibrational bands were observed in ethanol for indole derivatives with CN substituted on the six-membered rings (4-7CNIs) using UV/Vis pumped IR detection. A population redistribution process between the L-1(a) and L-1(b) states was observed in 4-7CNIs with a time constant of about 20 ps, driven by excitation-induced solvation relaxation. Only a single peak corresponding to the L-1(b) state was detected in 3CNI where the CN is attached on the five-membered ring.

CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

First principle study of enhanced CO adsorption on divacancy graphene-supported TM7 (TM = Fe, Co, Ni, Cu, Ag, and Au) clusters

Ruoqi Zhang, Delu Gao, Yixuan Li, Dunyou Wang

Summary: The adsorption of CO on transition metal clusters supported by divacancy graphene has been studied, revealing that the supported clusters exhibit stronger adsorption capacity for CO due to the orbital coupling and induced electrostatic interaction.

CHEMICAL PHYSICS (2024)