4.6 Article

Kinetic study of CO2 hydrates crystallization: Characterization using FTIR/ATR spectroscopy and contribution modeling of equilibrium/non-equilibrium phase-behavior

期刊

CHEMICAL ENGINEERING SCIENCE
卷 192, 期 -, 页码 371-379

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ces.2018.07.050

关键词

CO2 hydrate; Kinetic; CO2 concentration; Crystallization; FTIR/ATR spectroscopy

资金

  1. French National Research Agency under the program Crisalhyd [ANR-14-CE05-0045]

向作者/读者索取更多资源

Gas hydrates are regarded as promising materials for various potential applications. In particular, CO2 hydrates are known for their cold storage capacities, related to their high latent heat of melting. They could be used as high efficiency Phase Change Materials in Phase Change Slurries for secondary refrigeration loops. A better understanding of the crystallization mechanism of CO2 hydrates in slurries and of the resulting formation kinetics is still needed to evaluate and improve the efficiency of hydrate-based secondary refrigeration process. For that purpose, in the present work the real-time evolution of CO2 concentration in the liquid phase was measured in situ during hydrate formation. CO2 hydrates were formed within a stirred reactor equipped with an Attenuated Total Reflection probe coupled with a Fourier Transform Infra-Red spectroscopy analyzer. By comparing the measured concentration to calculations based on the assumptions of (a) a liquid-vapor equilibrium (LVE) and (b) a hydrate-liquid equilibrium (HLE), it was deduced that the crystallization kinetic is limited by CO2 transfers from the vapor phase to the liquid phase, whatever the experimental conditions tested. As soon as hydrates start forming, the CO2 concentration in the liquid phase almost instantaneously reaches the hydrate-vapor equilibrium (HVE) value at the experimental temperature, while the reactor pressure slowly decreases towards the LVE value defined by Henry's law. Different stirring speeds were experimented in order to check the effect of enhancing CO2 dissolution during hydrate formation. This resulted in faster dissolution of CO2, though still transfer-limited formation kinetics. (C) 2018 Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据