4.6 Article

DEM study of the transverse mixing of wet particles in rotating drums

期刊

CHEMICAL ENGINEERING SCIENCE
卷 86, 期 -, 页码 99-107

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ces.2012.06.015

关键词

Discrete element method; Rotating drum; Wet particles; Transverse mixing; Circulation period; Particle flow

向作者/读者索取更多资源

This paper presents a numerical study based on the discrete element method (DEM) to investigate the transverse mixing of wet particles in a rotating drum. The effects of the liquid surface tension, the drum rotation speed and the filling level on particle mixing were investigated. The results showed that particles had quick mixing in the transverse plane and the well mixed states were achieved within a few revolutions. The Lacey mixing index showed an exponential increase with mixing time. The presence of the capillary force in general reduced mixing performance. However, the mixing of dry particles was poorest at 64% filling level compared with other filling levels, and increasing cohesion at that level actually improved particle mixing. The analysis of particle movements indicated that particle mixing was dominated by the particle circulation period, which is the time required for a particle to complete one circulation in the drum, and its standard deviation. A model was proposed to estimate the circulation periods at different streamlines which were comparable with the simulation results, thus providing a general method to predict mixing performance in the transverse plane. (c) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Engineering, Chemical

Numerical Analysis of Effects of Specularity Coefficient and Restitution Coefficient on the Hydrodynamics of Particles in a Rotating Drum

Rezwana Rahman, Haiping Zhu, Aibing Yu

Summary: This paper presents a numerical study on the gas-solid flow in a rotating drum to investigate the influence of specularity coefficient and restitution coefficient on the hydrodynamic behavior of particles during the segregation process. The results reveal that the boundary condition and restitution coefficient have significant effects on the hydrodynamics of the particles, with an increase in specularity coefficient leading to increased depth of the active region, angle of repose, granular pressure, and granular temperature. With an increasing restitution coefficient, the angle of repose decreases while the granular pressure and temperature increase at the same volume fraction for both small and large particles.

PROCESSES (2022)

Article Energy & Fuels

Simple controllable foam structure NiCo2S4 for high-performance hybrid supercapacitors

Jun Wang, Jiangting Wang, Guisheng Zhu, Huarui Xu, Xiuyun Zhang, Yunyun Zhao, Jian Zhang, Kunpeng Jiang, Aibing Yu

Summary: The foam-structured NiCo2S4 (FSNCS) material was successfully synthesized with the addition of SiO2 nanospheres as the framework, leading to reduced dead volume. The FSNCS exhibited high capacity and energy density in the supercapacitor, along with good cyclic life.

JOURNAL OF ENERGY STORAGE (2022)

Article Engineering, Chemical

A continuum model for the segregation of bidisperse particles in a blade mixer

Liuyimei Yang, Qijun Zheng, Aibing Yu

Summary: This article proposes a continuum-based model for the process of blending powders using stirring blades. The model accurately describes the tempo-spatial distribution of small/large particles in the stirring process and captures the various intricate effects of blade parameters. It shows promise for optimizing blade mixers in industries.

AICHE JOURNAL (2022)

Review Engineering, Chemical

Particle scale modelling of powder recoating and melt pool dynamics in laser powder bed fusion additive manufacturing: A review

Erlei Li, Zongyan Zhou, Lin Wang, Ruiping Zou, Aibing Yu

Summary: This paper provides a review of the multi-physics problems involved in laser powder bed fusion (LPBF), including metal powder recoating, melting and solidification processes. The applications of discrete element method and computational fluid dynamics in studying these processes are discussed.

POWDER TECHNOLOGY (2022)

Review Engineering, Chemical

Recent advances in studies of wet particle fluidization characteristics

Huibin Xu, Weiyu Wang, Chi Ma, Wenqi Zhong, Aibing Yu

Summary: This article reviews the recent studies on the fluidization characteristics of wet particles in fluidized beds and spouted beds, including physical experiments and numerical simulations. The findings of these studies are important for the industrial applications of wet particle fluidization, aiding in the scale-up, design, and optimization of processes. The focus of the physical experiments is on the development of new measurement methods and related findings, while the focus of the numerical simulations is on the development of discrete element method (DEM) to provide new insights into wet particle fluidization at the particle scale. The challenges and needs for future research on wet particle fluidization are also discussed.

POWDER TECHNOLOGY (2022)

Article Engineering, Chemical

Numerical study on inlet operational conditions in the outside vapor deposition process

Jun He, Minshu Zhan, Baoyu Guo, Lihua Liu, Aibing Yu

Summary: The study numerically investigates the impact of different operational conditions at the inlets of OVD on SiO2 deposition efficiency and quality. Results show that adjusting the flow rate of SiCl4/O2 and the type of carrier gas can effectively alter the deposition efficiency and quality of SiO2 particles.

POWDER TECHNOLOGY (2022)

Article Engineering, Chemical

Co-simulation of multibody dynamics and discrete element method for hydraulic excavators

Jieqing Gan, Zongyan Zhou, Aibing Yu, Dean Ellis, Reece Attwood, Wei Chen

Summary: Multibody dynamics (MBD) simulation is a useful tool for analyzing the kinematic function of multibody systems, while discrete element method (DEM) is commonly used for simulating particle flows and overall processes. Combining MBD and DEM methods through functional mock-up interface (FMI) co-simulation can predict equipment performance by considering both material and equipment behavior. This study utilized Dymola software to perform MBD and FMI co-simulations, developing MBD models for a hydraulic excavator system and GPU-based DEM models for excavator digging cycles. The results demonstrated the significant impact of solid materials on excavator movement.

POWDER TECHNOLOGY (2023)

Article Engineering, Environmental

Eulerian-Eulerian modeling of the formation and deposition of SiO2 in the outside vapor deposition process

Minshu Zhan, Jun He, Baoyu Guo, Lihua Liu, Aibing Yu

Summary: This study proposes an Eulerian-Eulerian multiphase model based on CFD to simulate the physico-chemical behavior in the OVD process. It successfully captures the transport phenomena and provides a deep understanding of the growth and deposition mechanisms of SiO2 in the OVD process.

CHEMICAL ENGINEERING JOURNAL (2022)

Article Engineering, Chemical

Optimization of Ironmaking Blast Furnace Operations Using an Integrated Mathematical Model

Lingling Liu, Shibo Kuang, Baoyu Guo, Aibing Yu

Summary: Optimization of ironmaking blast furnaces involves considering bottom and top operations. A recently developed integrated BF model and numerical orthogonal experiments are used to predict BF performance indicators and conduct multi-objective optimization and operatable zone identification.

CHEMIE INGENIEUR TECHNIK (2023)

Article Energy & Fuels

Injection of COREX off-gas into ironmaking blast furnace

Lingling Liu, Shibo Kuang, Baoyu Guo, Aibing Yu

Summary: Oxygen blast furnace (OBF) is a low carbon ironmaking technology that suffers from high gas flame temperature. Injecting COREX off-gas (CROG) into the industrial BF can improve coal combustion and overall performance. The optimum injection rate of CROG helps achieve better fuel economy by enhancing indirect reduction and coke combustion.
Article Engineering, Chemical

Numerical study of the multiphase flows and separation performance of hydrocyclone with tapered cross-section inlet

E. Dianyu, Haihan Fan, Zhongfang Su, Guangtai Xu, Ruiping Zou, Aibing Yu, Shibo Kuang

Summary: This paper proposes a hydrocyclone with a tapered inlet design to reduce the influence of particles misplacement. The new hydrocyclone integrates the advantages of both spiral inlet and tangential inlet. Through the analysis of separation performance, flow characteristics, and volume fraction distributions, an optimum design is identified. Compared to a standard hydrocyclone, the new design significantly improves tangential velocities, expands the locus of zero vertical velocity, and achieves more stable air core, symmetric radial and axial velocity distributions, as well as reduced eddy flow and short-circuit flow. This study offers a new perspective for improving hydrocyclone flows and performance.

POWDER TECHNOLOGY (2023)

Article Chemistry, Multidisciplinary

Droplets Patterning of Structurally Integrated 3D Conductive Networks-Based Flexible Strain Sensors for Healthcare Monitoring

Yang Zhang, Danjiao Zhao, Lei Cao, Lanlan Fan, Aiping Lin, Shufen Wang, Feng Gu, Aibing Yu

Summary: Flexible strain sensors are crucial for public healthcare as they can noninvasively monitor vital health signals. In this study, we developed structurally integrated 3D conductive networks-based flexible strain sensors using a droplet-based aerosol jet printing process and a transfer process. The sensors showed enhanced conduction and mechanical properties during stretching, and demonstrated effective responses to human movements such as finger bending and arm bending. Our findings highlight the potential of droplet-based aerosol jet printing for advanced flexible devices in optoelectronics and wearable electronics applications.

NANOMATERIALS (2023)

Article Engineering, Chemical

New understanding from intestinal absorption model: How physiological features influence mass transfer and absorption

Yifan Qin, Xiao Dong Chen, Aibing Yu, Jie Xiao

Summary: Mathematical modeling of mass transfer and absorption in the small intestine is challenging and requires a reliable and computationally efficient predictive model. This study derives an absorption model that considers the 3D intestinal inner wall structure and can be used in a 1D distributed model. Computational fluid dynamics simulations are used to quantify the mass-transfer coefficient. The model provides insights into the influence of intestinal morphology and motility on mass transfer and absorption.

AICHE JOURNAL (2023)

Article Energy & Fuels

Particle-scale modelling of injected hydrogen and coke co-combustion in the raceway of an ironmaking blast furnace

E. Dianyu, Peng Zhou, Langyong Ji, Jiaxin Cui, Qiang Xu, Liejin Guo, Aibing Yu

Summary: In this study, a validated CFD-DEM model is used to investigate the dynamics, microstructure, and thermochemical behaviors in the raceway of a blast furnace with hydrogen injection operations. The effects of hydrogen injection concentration on raceway size, gas temperature, and components are studied.
Article Pharmacology & Pharmacy

Optimization of formulation and atomization of lipid nanoparticles for the inhalation of mRNA

Hao Miao, Ke Huang, Yingwen Li, Renjie Li, Xudong Zhou, Jingyu Shi, Zhenbo Tong, Zhenhua Sun, Aibing Yu

Summary: In this study, the LNP formulation, atomization methods, and buffer system were optimized to maintain stability and efficiency of mRNA encapsulated LNPs during the atomization process. A suitable LNP formulation for atomization, AX4, DSPC, cholesterol, and DMG-PEG2K at a 35/16/46.5/2.5 (%) molar ratio, was identified based on in vitro experiments. Soft mist inhaler (SMI) was found to be the most suitable method for pulmonary delivery of mRNA encapsulated LNPs. The physico-chemical properties of the LNPs, such as size and entrapment efficiency, were further improved by adjusting the buffer system with trehalose. In vivo fluorescence imaging of mice demonstrated the potential of SMI with proper LNPs design and buffer system for inhaled mRNA-LNP therapies.

INTERNATIONAL JOURNAL OF PHARMACEUTICS (2023)

Article Engineering, Chemical

Directly assembling initial metal-organic framework and covalent organic polymer toward bifunctional oxygen electrocatalysts for Zn-air flow battery

Qing Han, Mengqing Shi, Linkai Han, Di Liu, Mingwei Tong, Yuxin Xie, Zhonghua Xiang

Summary: Developing highly efficient bifunctional oxygen electrocatalysts is crucial for zinc-air flow batteries. Metal-organic frameworks (MOFs) and covalent organic polymers (COPs) have emerged as promising alternatives due to their designable and controllable atomic-level structures. However, their catalytic performances are limited by conductivity and catalytic activity. In this study, nanosheet FeNi-MOF and iron phthalocyanine rich COP hybrid materials are assembled through the pi-pi stacking effect to create highly efficient bifunctional electrocatalysts. The resulting catalyst exhibits superior catalytic performance and stability, making it a promising candidate for zinc-air flow batteries.

CHEMICAL ENGINEERING SCIENCE (2024)

Article Engineering, Chemical

Phase equilibria modeling of cross-associating systems guided by a quantum chemical multi-conformational framework

Daria Grigorash, Dmytro Mihrin, Rene Wugt Larsen, Erling H. Stenby, Wei Yan

Summary: The article introduces a new approach to describe the cross-association between molecules, allowing for the simulation of weakly bound molecular complexes with different conformations in mixtures. By incorporating this approach into the equation of state, accurate predictions of vapor-liquid equilibrium and liquid-liquid equilibrium can be made. The new method is validated through experiments on alcohol and acid mixtures, with the results compared to experimental data, demonstrating its accuracy and reliability.

CHEMICAL ENGINEERING SCIENCE (2024)

Article Engineering, Chemical

Investigating the effect of sintering rate and solvent type on the liquid transport kinetics of α-alumina powder compacts

Mohammed Al-Sharabi, Daniel Markl, Vincenzino Vivacqua, Prince Bawuah, Natalie Maclean, Andrew P. E. York, Axel Zeitler

Summary: This study used terahertz pulsed imaging to investigate the transport process of different solvents into ceramic catalytic materials. The results showed that the heating rate of the samples influenced the water transport rate, while the viscosity of 1-octanol slowed down its transport.

CHEMICAL ENGINEERING SCIENCE (2024)

Article Engineering, Chemical

A new semi-empirical correlation for estimating settling dynamics of suspensions in viscoelastic shear-thinning fluids

Chukwunonso Anyaoku, Sati Bhattacharya, Rajarathinam Parthasarathy

Summary: This study aimed to enhance understanding of settling dynamics in viscoelastic fluids by developing a semi-empirical correlation and a dimensionless ratio, which accurately described the characteristics of settling suspensions.

CHEMICAL ENGINEERING SCIENCE (2024)

Article Engineering, Chemical

Pipe rheology of wet aqueous application foams

Antti I. Koponen, Janika Viitala, Atsushi Tanaka, Baranivignesh Prakash, Olli-Ville Laukkanen, Ari Jasberg

Summary: This study focuses on the development of foam application chemicals for the paper and board industry. The research explores the rheology of the polyvinyl alcohol foam used in the process. Measurements were conducted to determine the foam viscosity and slip flow. The results suggest that slip flow contributes significantly to the total flow rate, and the obtained viscosity and slip models provide a solid foundation for industrial processes.

CHEMICAL ENGINEERING SCIENCE (2024)

Article Engineering, Chemical

Boosting the visible light photo-thermal catalytic performance of α-Bi2O3 by tuning Fe doping amount in carbonylation of isobutyl amine with CO2

Dalei Sun, Jinghui Cai, Yating Yang, Zhiwu Liang

Summary: In this study, Fe-doped alpha-Bi2O3 catalysts with different Fe/Bi molar ratios were synthesized and utilized in the carbonylation of isobutyl amine with CO2. The results showed that Fe doping significantly enhanced the catalytic abilities of alpha-Bi2O3.

CHEMICAL ENGINEERING SCIENCE (2024)

Article Engineering, Chemical

Prediction of nitrogen solubility in ionic liquids by machine learning methods based on COSMO-derived descriptors

Yuan Tian, Xinxin Wang, Yanrong Liu, Wenping Hu

Summary: This paper predicts the solubility of nitrogen gas in ionic liquids (ILs) using two quantitative structure-property relationship (QSPR) models. By combining machine learning methods and ionic fragments contribution method, the accuracy and reliability of the prediction models are improved.

CHEMICAL ENGINEERING SCIENCE (2024)

Article Engineering, Chemical

Study on effective phase interfacial area at different injection angles of hydro-jet cyclone

Liwang Wang, Wei Liu, Pan Yang, Yulong Chang, Xiaoxu Duan, Lingyu Xiao, Yaoming Hu, Jiwei Wu, Liang Ma, Hualin Wang

Summary: This study investigates the effective phase interfacial area (ae) of hydro-jet cyclones at different injection angles. The results show that a 45 degrees upward incidence angle yields the most favorable flow field characteristics for efficient mass transfer. The significant enhancement in ae of the hydro-jet cyclones offers the advantage of reducing equipment volume and cost savings.

CHEMICAL ENGINEERING SCIENCE (2024)

Article Engineering, Chemical

Experimental determination and thermodynamic modeling of the hydrogen sulfide hydrate solubility in water

Chuanjun Wu, Jiangzhi Chen, Jiyue Sun, I-Ming Chou, Shenghua Mei, Juezhi Lin, Lei Jiang

Summary: In this study, the solubility of H2S hydrate in water was measured using Raman spectroscopy. The results showed that the solubility increases with temperature under certain equilibrium conditions, and the solubility also depends on pressure and temperature under different equilibrium conditions. A thermodynamic model based on the van der Waals-Platteeuw theory was developed to predict the solubility, demonstrating its accuracy.

CHEMICAL ENGINEERING SCIENCE (2024)

Article Engineering, Chemical

Chemical recycling of polyethylene terephthalate (PET) to monomers: Mathematical modeling of the transesterification reaction of bis (2-hydroxyethyl) terephthalate to dimethyl terephthalate

Lorenzo Brivio, Serena Meini, Mattia Sponchioni, Davide Moscatelli

Summary: This study investigates the influence of three main parameters and proposes a kinetic model to predict the optimal operating conditions for high yield of dimethyl terephthalate (DMT) in the chemical recycling process of polyethylene terephthalate (PET).

CHEMICAL ENGINEERING SCIENCE (2024)

Article Engineering, Chemical

Hierarchical porous honeycomb NiCo/C catalyst for decarboxylation of fatty acids and upgrading of sludge bio-crude

Hongju Lin, Fanhui Liao, Yanchang Chu, Mingyu Xie, Lun Pan, Yuanyuan Wang, Lijian Leng, Donghai Xu, Le Yang, Gangfeng Ouyang

Summary: A honeycomb NiCo/C-Na catalyst with a micro-meso-macroporous structure has been fabricated and shown to have significantly higher catalytic activity for the decarboxylation of fatty acids. It also proves to be efficient in upgrading sludge HTL bio-crude, resulting in a biofuel with decreased viscosity and increased density.

CHEMICAL ENGINEERING SCIENCE (2024)

Article Engineering, Chemical

High hydrothermal stability Co@NC catalyst for hydrothermal deoxygenation of algae-based bio-oil model compound

Xiaoxian Li, Rui Li, Min Lin, Mingde Yang, Yulong Wu

Summary: A series of coated non-noble metal porous carbon catalysts were synthesized and applied to the aqueous-phase deoxygenation of algal bio-oil. One of the catalysts showed excellent deoxygenation selectivity and catalytic activity at 250 degrees C. The catalyst exhibited good hydrothermal stability and the reaction mechanism was proposed based on product analysis and active site analysis.

CHEMICAL ENGINEERING SCIENCE (2024)

Article Engineering, Chemical

Effect of potassium in catalysts obtained by the solution combustion synthesis for co-production of hydrogen and carbon nanofibers by catalytic decomposition of methane

M. V. Chudakova, M. V. Popov, P. A. Korovchenko, E. O. Pentsak, A. R. Latypova, P. B. Kurmashov, A. A. Pimenov, E. A. Tsilimbaeva, I. S. Levin, A. G. Bannov, A. V. Kleymenov

Summary: A series of catalysts with different potassium contents were prepared using solution combustion synthesis and characterized using various techniques. The results showed that the potassium content affected the phase composition and texture of the catalysts. The addition of a small amount of potassium resulted in a change in particle size distribution, leading to higher hydrogen yield. The Ni-1%K2O/Al2O3 catalyst exhibited the highest hydrogen yield at temperatures of 675 and 750 degrees Celsius.

CHEMICAL ENGINEERING SCIENCE (2024)

Article Engineering, Chemical

Modification of e-CPA for estimating phase equilibria and development of predictive models for electrical conductivity in aqueous electrolyte solutions

Aliakbar Roosta, Nima Rezaei

Summary: In this study, we modified the electrolyte cubic plus association equation of state (e-CPA EoS) and integrated it with two electrical conductivity models to estimate the electrical conductivity of 11 monovalent electrolyte solutions in water. The modified e-CPA model demonstrated better performance and the hybridization with electrical conductivity models resulted in two predictive models for estimating the electrical conduction of dilute and concentrated electrolyte solutions. These predictive models showed relative average percentage deviations (AARD) of 11.15% and 13.87% over wide ranges of temperature and electrolyte concentration.

CHEMICAL ENGINEERING SCIENCE (2024)

Article Engineering, Chemical

QSPR models for complexation performance of α-cyclodextrin and β-cyclodextrin complexes by norm indices

Haoren Niu, Jianzheng Wang, Qingzhu Jia, Qiang Wang, Jin Zhao, Fangyou Yan

Summary: A study developed two quantitative structure-property relationship models for the complexation performance of alpha- and beta-cyclodextrins and validated their stability and predictive ability through internal and external validation. The models showed robustness and satisfactory performance, as demonstrated by the experimental results and model validations. These models can effectively predict the binding constants between cyclodextrins and various types of molecules, providing valuable tools for cyclodextrin design.

CHEMICAL ENGINEERING SCIENCE (2024)