4.6 Article

Finite element modeling of the laminar and transition flow of the Superblend dual shaft coaxial mixer on parallel computers

期刊

CHEMICAL ENGINEERING SCIENCE
卷 64, 期 21, 页码 4442-4456

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ces.2009.07.022

关键词

Fluid mechanics; Simulation; Hydrodynamics; Mixing; Mathematical modeling; Momentum transfer

资金

  1. National Science and Engineering Research Council of Canada (NSERC)

向作者/读者索取更多资源

The macro-mixing mechanisms of the Superblend coaxial mixer consisting of a Maxblend impeller and a double helical ribbon agitator mounted on two independent coaxial shafts rotating at different speeds are numerically investigated. The simulations are based on the resolution of the Navier-Stokes equations with help of a parallel three-dimensional finite element solver exploiting the capabilities of high performance computers. To model the rotation of agitators a hybrid approach based on a novel finite element sliding mesh and fictitious domain method is used. The power consumption, the flow patterns, the shear rate distribution, the pumping capacity and the mixing time of the Superblend mixer are calculated from the simulated hydrodynamics. The simulations allow observing the flow as it evolves from deep laminar (Re = 0.1) to transition (Re = 520) regime. As Reynolds number increases, several recirculation zones above and below the middle of the tank are formed. It is found that operating the agitators in co-rotation mode requires less power consumption and exhibits equal or shorter mixing time than counter-rotation mode. The larger power consumption in counter-rotating mode is caused by the presence of high shear vortices generated between the two coaxial agitators. Furthermore it is shown that the shear distribution throughout the Superblend coaxial mixer operating in co-rotation mode is almost homogenous, which is highly desirable for shear sensitive products. In view of the results obtained in this work, the Superblend coaxial mixer is found as a good alternative for tough mixing applications. (C) 2009 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据