4.6 Article

Decorated carbon nanotubes by silicon deposition in fluidized bed for Li-ion battery anodes

期刊

CHEMICAL ENGINEERING RESEARCH & DESIGN
卷 91, 期 12, 页码 2491-2496

出版社

INST CHEMICAL ENGINEERS
DOI: 10.1016/j.cherd.2013.01.002

关键词

CVD; Fluidization; Carbon nanotubes; Silicon; Silane; Li-ion

向作者/读者索取更多资源

Multi-walled carbon nanotubes Graphistrength (R) were decorated with silicon by Fluidized Bed Chemical Vapor Deposition. The ability to fluidize of these nanotubes forming ball-shaped jumbles of several hundreds of microns in diameter and that of the final CNT-Si balls was first studied. These balls reveal to fluidize with characteristics of Geldart's group A particles, i.e. without bubbles and with high bed expansion. Coating experiments from silane SiH4 were performed at 500 degrees C in the 30-60 wt.% range of silicon deposited. SEM and TEM imaging reveals that the nanotubes are coated by silicon nanoparticles uniformly distributed from the periphery to the center of the balls for the whole conditions tested. On-line acquisition of key process parameters evolution shows that the material remains fluidizable, even for large proportions of silicon deposited. The Sauter diameter and the tapped, untapped and skeleton densities of balls increase with the percentage of silicon deposited, whereas their specific surface area decreases due to the progressive filling of the pores by the deposit. This composite material is a promising candidate as anode to replace graphite in lithium-ion batteries. (C) 2013 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据