4.6 Article

Electrothermal performance of an activated carbon honeycomb monolith

期刊

CHEMICAL ENGINEERING RESEARCH & DESIGN
卷 90, 期 11, 页码 2013-2022

出版社

INST CHEMICAL ENGINEERS
DOI: 10.1016/j.cherd.2012.03.010

关键词

Electric Swing Adsorption (ESA); Activated carbon; Monolith; Heating; Joule effect

资金

  1. Portuguese Foundation for Science and Technology (FCT) [PTDC/EQU-EQU/65541/2006]
  2. FEDER through COMPETE - Programa Operacional Factores de Competitividade [PEst-C/EQB/LA0020/2011]
  3. FCT - Fundacao para a Ciencia e a Tecnologia
  4. FCT [SFRWBD/43540/2008]
  5. Fundação para a Ciência e a Tecnologia [PTDC/EQU-EQU/65541/2006] Funding Source: FCT

向作者/读者索取更多资源

The main advantage of Electric Swing Adsorption (ESA) process is related to the fast heating rates that can be achieved by Joule effect. Since this heating is done by passing electricity, its utilization should be efficient to reduce the overall losses of the system. This work discusses the heat transfer phenomena of an Electric Swing Adsorption (ESA) process in order to improve the overall energetic efficiency of the unit. Experiments were done with an activated carbon honeycomb monolith and testing different electrodes and column arrangements. The experimental set-up with lower electrical resistance has shown lower losses: faster heating rates can be achieved and less heat is lost by natural convection to the surroundings. Brass electrodes employed with a Teflon (R) support have resulted in lower energy losses. Results obtained in a laboratory-scale unit allowed a heating efficiency of 52% employing an average power of 293W. Most of the energy losses were to the electrodes and surroundings, reason why if the process is scaled-up, the efficiency of the unit should be better. Furthermore, the mass of adsorbent/mass of electrodes ratio can be reduced and then the overall efficiency can be increased up to 83%. (C) 2012 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据