4.7 Article

The role of unburned carbon concentrates from fly ashes in the oxidation and retention of mercury

期刊

CHEMICAL ENGINEERING JOURNAL
卷 174, 期 1, 页码 86-92

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2011.08.053

关键词

Mercury; Fly ash; Retention; Oxidation

资金

  1. Instituto Reestructuracion Mineria del Carbon (MITYC)
  2. [RFCR-CT-2007-00007]
  3. [CTM2004-04252-CO2-02/TECHNO]

向作者/读者索取更多资源

During the combustion of coal in power plants Hg is released from the coal into the environment. Several technologies are under developed to reduce these emissions, but the need to implement new control systems will depend in part on the extent to which Hg can be captured in the fly ash. Previous studies have demonstrated that fly ashes may not only retain Hg species but also oxidize Hg(0)(g). This should be taken into consideration when developing technologies for Hg retention. The aim of this study is to acquire a better understanding of the interactions between Hg(0)(g) and fly ashes and to clarify the effect of unburned carbon and the flue gas composition upon the retention and oxidation mechanisms. A series of retention, oxidation and desorption experiments were carried out using lab-scale reactors. All the results obtained indicate that the interaction between Hg and fly ash is mainly chemical since the retention of Hg involves oxidation. Moreover, if the oxidation takes place in gas phase, condensation of oxidized mercury occurs. Carbonaceous matter is involved in most of the retention and oxidation mechanisms between Hg and fly ash. The carbon concentrates with the highest Hg retention capacity produce the highest Hg oxidation. The gas mixtures containing O(2) + CO(2) + SO(2) + H(2)O were observed to increase Hg retention in the carbon concentrates from fly ashes. However, the presence of HCl in the mixtures may increase or decrease Hg capture. Heterogeneous oxidation was only significant in the fly ash fractions enriched in unburned carbon. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据