4.7 Article

Oxidative coupling of methane (OCM) in a catalytic membrane reactor and comparison of its performance with other catalytic reactors

期刊

CHEMICAL ENGINEERING JOURNAL
卷 148, 期 2-3, 页码 525-532

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2009.01.008

关键词

Oxidative coupling of methane (OCM); Catalytic membrane reactor (CMR); Na-W-Mn/SiO2; Mixed ionic-electronic conducting membrane (MIECM); Packed bed membrane reactor (PBMR)

资金

  1. Universiti Sains Malaysia, Penang, Malaysia [FPP 2005/030]

向作者/读者索取更多资源

The oxidative coupling of methane (OCM) was studied in a catalytic membrane reactor (CMR), catalyst packed bed reactor (PBR) and catalyst packed bed membrane reactor (PBMR) respectively. The CMR consists of a mixed ionic-electronic conducting membrane (MIECM) Ba0.5Ce0.4Gd0.1Co0.8Fe0.2O3-delta (BCGCF) coating on the outer surface of ceramic tubular support using sol-gel method. The inner surface of the membrane tube was coated with 3 components (Na-W-Mn) catalyst using mixture slurry dip coating method. Prior to the OCM reaction, separation of oxygen from the mixture of nitrogen and oxygen similar to air composition was performed in the membrane reactor. In the absence of chemical reaction, the oxygen permeation flux was 0.6 cm(3)/min cm(2) at 900 degrees C with sweep gas flow rate 100 cm(3)/min. The oxygen permeation flux increased significantly during the oxidative coupling of methane reaction. 67.4% of C2+ selectivity and methane conversion of 51.6% with oxygen permeation flux 1.4 cm(3)/min cm(2) was obtained at 850 degrees C with sweep gas flow rate of 100 cm(3)/min. The performances of PER and PBMR using Na-W-Mn/SiO2 were compared with the performance of CMR. The catalytic membrane reactor performed best among three reactors with C2+ yield of 34.7%. The deterioration of the catalytic membrane performance after reaction was investigated by SEM and XRD analyses. (c) 2009 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Environmental Sciences

CO2reforming of methane to syngas over multi-walled carbon nanotube supported Ni-Ce nanoparticles: effect of different synthesis methods

Nur Syahidah Afandi, Maedeh Mohammadi, Satoshi Ichikawa, Abdul Rahman Mohamed

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH (2020)

Article Energy & Fuels

Investigation of synergy and inhibition effects during co-gasification of tire char and biomass in CO2environment

Pooya Lahijani, Maedeh Mohammadi, Abdul Rahman Mohamed

Summary: This study investigates the co-gasification of tire char and rambutan peel. The results show that high proportion of tire char inhibits the gasification reaction, while higher content of biomass promotes the reaction. In addition, natural catalysts in the biomass also have a synergistic effect on the reaction.

BIOMASS CONVERSION AND BIOREFINERY (2022)

Article Environmental Sciences

An investigation on the relationship between physicochemical characteristics of alumina-supported cobalt catalyst and its performance in dry reforming of methane

Nor Fazila Khairudin, Maedeh Mohammadi, Abdul Rahman Mohamed

Summary: This study focused on developing alumina-supported cobalt (Co/Al2O3) catalysts for dry reforming of methane (DRM) with high catalytic activity and long-term stability, attributed to the small Co particle size with good dispersion on the alumina support and strong metal-support interaction.

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH (2021)

Article Environmental Sciences

Alkali-modified biochar as a sustainable adsorbent for the low-temperature uptake of nitric oxide

S. Anthonysamy, P. Lahijani, M. Mohammadi, A. R. Mohamed

Summary: This study investigated the low-temperature oxidative uptake of NO on alkali-modified biochar, showing that the NO capture capacity was significantly improved after modification. The adsorption capacity of KOH-activated biochar reached 87.0 mg/g at 30 degrees C, mainly attributed to factors like oxygen functionalities and carbon defects.

INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY (2022)

Article Materials Science, Ceramics

Electrochemical exfoliation of graphene using dual graphite electrodes by switching voltage and green molten salt electrolyte

Maher T. Alshamkhani, Pooya Lahijani, Keat Teong Lee, Abdul Rahman Mohamed

Summary: In this study, the switching voltage technique was used to efficiently exfoliate graphite in eutectic molten salts. The exfoliated graphene samples exhibited high production yields, low ID/IG ratios, and good electrical conductivities. Compared to constant voltage exfoliation, the switching voltage technique produced smoother graphene flakes with less agglomeration, crumbling, and wrinkling. Characterization analysis confirmed the smaller crystallite size, lower thickness, and higher quality and purity of the exfoliated graphene prepared using the switching voltage technique.

CERAMICS INTERNATIONAL (2022)

Article Environmental Sciences

Development of microwave-assisted nitrogen-modified activated carbon for efficient biogas desulfurization: a practical approach

Norhusna Mohamad Nor, Lau Lee Chung, Abdul Rahman Mohamed

Summary: The utilization of microwave heating and nitrogen-modification can generate adsorbents with superior performance for efficient removal of hydrogen sulfide (H2S). The modified palm shell activated carbon synthesized using microwave heating exhibited excellent properties, including a large surface area and new pore structures. Microwave heating assisted in the development of the adsorbent's properties and contributed to high removal of H2S at low adsorption temperature.

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH (2023)

Review Energy & Fuels

Modification of biomass-derived biochar: A practical approach towards development of sustainable CO2 adsorbent

Nuradibah Mohd Amer, Pooya Lahijani, Maedeh Mohammadi, Abdul Rahman Mohamed

Summary: This article reviews the recent studies on biochar as a material for carbon capture, including its preparation and modification methods, and the influence on its physical, chemical, and physicochemical properties. Biochar exhibits high CO2 adsorption performance and sustainable performance, which are crucial for large-scale CO2 capture.

BIOMASS CONVERSION AND BIOREFINERY (2022)

Review Chemistry, Physical

Toward Excellence in Photocathode Engineering for Photoelectrochemical CO2 Reduction: Design Rationales and Current Progress

Lutfi Kurnianditia Putri, Boon-Junn Ng, Wee-Jun Ong, Siang-Piao Chai, Abdul Rahman Mohamed

Summary: This article reviews the potential, design strategies, and material progress of photoelectrochemical CO2 reduction reaction (PEC CO2RR), as well as summarizes and discusses various photocathode semiconductor materials. Finally, perspectives on the design of photocathodes for CO2RR and new paradigms in the field are proposed.

ADVANCED ENERGY MATERIALS (2022)

Article Energy & Fuels

An investigation on sequential ultrasonication and metal modification of biochar on its CO2 capture performance

Anis Natasha Shafawi, Pooya Lahijani, Maedeh Mohammadi, Abdul Rahman Mohamed

Summary: Sequential ultrasonication and metal modification can enhance the CO2 capture capacity of biochar, but no synergistic effect was observed when they were applied together. Ultrasonication and metal modification can modulate the physicochemical properties of biochar, affecting its CO2 capture performance. The Avrami kinetic model can better predict the CO2 adsorption on biochar.

BIOMASS CONVERSION AND BIOREFINERY (2022)

Review Chemistry, Inorganic & Nuclear

Methods and strategies for producing porous photocatalysts: Review

Bashaer Mahmoud Namoos, Abdul Rahman Mohamed, Khozema Ahmed Ali

Summary: The desire to improve photocatalytic activity is increasing, especially in semiconductors. Porous photocatalysts have been synthesized to improve surface area and reduce recombination of electron-hole pairs. This paper reviews recent works on porous photocatalysts, with a focus on synthesis and fabrication methods. The topotactic transition technique is the best method for metal oxide porous photocatalysts, while self-organizing blocks are the best method for polymeric porous photocatalysts, especially for growing and fixing 1D semiconductor nanomaterials on 3D and 2D semiconductors on 2D. The hard template method allows for better control of particle shape and size, but the template removal is non-ecofriendly, making the soft template method more favorable. The etching method, on the other hand, is suitable for fabricating porous photocatalysts through a membrane by utilizing the electrical charge created by moving electrons in the electrolyte as a driving force.

JOURNAL OF SOLID STATE CHEMISTRY (2023)

Review Engineering, Environmental

Sulfur dioxide catalytic reduction for environmental sustainability and circular economy: A review

Michelle Mei Xue Lum, Kim Hoong Ng, Sin Yuan Lai, Abdul Rahman Mohamed, Abdulkareem Ghassan Alsultan, Yun Hin Taufiq-Yap, Mei Kee Koh, Mohamad Azuwa Mohamed, Dai-Viet N. Vo, Manjulla Subramaniam, Kyle Sebastian Mulya, Nathasya Imanuella

Summary: Air pollution from untreated sulfur dioxide-rich flue gas is a major environmental and human health issue. Many sulfur dioxide removal technologies have been developed, but conventional methods generate by-products. Catalytic reduction of sulfur dioxide offers a sustainable solution with high efficiency and the recovery of valuable solid sulfur. This review discusses recent advances and the potential of this technology.

PROCESS SAFETY AND ENVIRONMENTAL PROTECTION (2023)

Review Chemistry, Multidisciplinary

Retrospective insights into recent MXene-based catalysts for CO2 electro/photoreduction: how far have we gone?

Xin-Quan Tan, Wuwei Mo, Xinlong Lin, Jian Yiing Loh, Abdul Rahman Mohamed, Wee-Jun Ong

Summary: The electro/photocatalytic CO2 reduction reaction (CO2RR) is an important approach for the synthesis of renewable fuels and value-added chemicals. MXenes, a type of 2D transition metal carbides, nitrides, and carbonitrides, show great potential in electrocatalysis and photocatalysis due to their unique properties. This review provides an overview of recent advances in MXene-based catalysts for the electrocatalytic and photocatalytic CO2RR, including their structure, synthesis pathways, and activity enhancement strategies. The review also discusses the current state of research in the field and proposes future perspectives.

NANOSCALE (2023)

Article Engineering, Environmental

A metal-free electrochemically exfoliated graphene/graphitic carbon nitride nanocomposite for CO2 photoreduction to methane under visible light irradiation

Maher T. Alshamkhani, Lutfi Kurnianditia Putri, Pooya Lahijani, Keat Teong Lee, Abdul Rahman Mohamed

Summary: In this study, an electrochemically exfoliated graphene/graphite carbon nitride ((EG)/g-C3N4) heterojunction photocatalyst was synthesized for CO2 photoreduction to methane. The best-performing photocatalyst (0.075 EG-CN) showed a significant enhancement in CH4 production with 98.6% selectivity after 6 hours of light irradiation compared to pure CN. The developed photocatalyst exhibited high stability after consecutive cycles of CO2 photoreduction to CH4.

JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING (2023)

Review Chemistry, Physical

Point-to-face contact heterojunctions: Interfacial design of 0D nanomaterials on 2D g-C3N4 towards photocatalytic energy applications

Xin-Quan Tan, Sue-Faye Ng, Abdul Rahman Mohamed, Wee-Jun Ong

Summary: This article introduces the recent advances in experimental and computational studies on the interfacial design of 0D nanostructures on 2D graphitic carbon nitride (g-C3N4). By engineering point-to-face contact between 2D g-C3N4 and 0D nanomaterials, heterojunction interfaces can be formed, which is beneficial for photocatalytic reactions. Different types of 0D nanostructures and synthesis strategies for photocatalytic applications are discussed.

CARBON ENERGY (2022)

Article Chemistry, Physical

Uncovering the multifaceted roles of nitrogen defects in graphitic carbon nitride for selective photocatalytic carbon dioxide reduction: a density functional theory study

Jie-Yinn Tang, Chen-Chen Er, Lling-Lling Tan, Yi-Hao Chew, Abdul Rahman Mohamed, Siang-Piao Chai

Summary: This study systematically unraveled the effect of defect engineering on the properties and catalytic performance of graphitic carbon nitride (g-C3N4). By introducing various defect sites, the study achieved improved charge separation efficiency and CO2 adsorption affinity in g-C3N, providing a more feasible pathway for CO2 reduction.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2022)

Article Engineering, Environmental

A metal-phenolic network-assembled nanotrigger evokes lethal ferroptosis via self-supply loop-based cytotoxic reactions

Xinping Zhang, Yuxin Guo, Xiaoyang Liu, Shun-Yu Wu, Ya-Xuan Zhu, Shao-Zhe Wang, Qiu-Yi Duan, Ke-Fei Xu, Zi-Heng Li, Xiao-Yu Zhu, Guang-Yu Pan, Fu-Gen Wu

Summary: This study develops a nanotrigger HCFT for simultaneous photodynamic therapy and light-triggered ferroptosis therapy. The nanotrigger can relieve tumor hypoxia, induce enhanced photodynamic reaction, and facilitate the continuation of Fenton reaction, ultimately leading to lethal ferroptosis in tumor cells.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

XAS and DFT investigation of atomically dispersed Cu/Co alloyed Pt local structures under selective hydrogenation of acetylene to ethylene

Olumide Bolarinwa Ayodele, Toyin Daniel Shittu, Olayinka S. Togunwa, Dan Yu, Zhen-Yu Tian

Summary: This study focused on the semihydrogenation of acetylene in an ethylene-rich stream using two alloyed Pt catalysts PtCu and PtCo. The PtCu catalyst showed higher activity and ethylene yield compared to PtCo due to its higher unoccupied Pt d-orbital density. This indicates that alloying Pt with Cu is more promising for industrial relevant SHA catalyst.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

A multifunctional emitter with synergistical adjustment of rigidity and flexibility for high-performance data-recording and organic light-emitting devices with hot exciton channel

Guowei Chen, Wen-Cheng Chen, Yaozu Su, Ruicheng Wang, Jia-Ming Jin, Hui Liang, Bingxue Tan, Dehua Hu, Shaomin Ji, Hao-Li Zhang, Yanping Huo, Yuguang Ma

Summary: This study proposes an intramolecular dual-locking design for organic luminescent materials, achieving high luminescence efficiency and performance for deep-blue organic light-emitting diodes. The material also exhibits unique mechanochromic luminescence behavior and strong fatigue resistance.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Cobalt/nickel purification by solvent extraction with ionic liquids in millifluidic reactors: From single-channel to numbered-up configuration with solvent recycle

Joren van Stee, Gregory Hermans, Jinu Joseph John, Koen Binnemans, Tom Van Gerven

Summary: This work presents a continuous solvent extraction method for the separation of cobalt and nickel in a millifluidic system using Cyphos IL 101 (C101) as the extractant. The optimal conditions for extraction performance and solvent properties were determined by investigating the effects of channel length, flow rate, and temperature. The performance of a developed manifold structure was compared to a single-channel system, and excellent separation results were achieved. The continuous separation process using the manifold structure resulted in high purity cobalt and nickel products.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Environment-triggered nanoagent with programmed gas release performance for accelerating diabetic infected wound healing

Yan Xu, Jingai Jiang, Xinyi Lv, Hui Li, Dongliang Yang, Wenjun Wang, Yanling Hu, Longcai Liu, Xiaochen Dong, Yu Cai

Summary: A programmed gas release nanoparticle was developed to address the challenges in treating diabetic infected wounds. It effectively removes drug-resistant pathogens and remodels the wound microenvironment using NO and H2S. The nanoparticle can eliminate bacteria and promote wound healing through antibacterial and anti-inflammatory effects.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Synergistic dopa-reinforced fluid hydrosol as highly efficient coal dust suppressant

Tong Xia, Zhilin Xi, Lianquan Suo, Chen Wang

Summary: This study investigated a highly efficient coal dust suppressant with low initial viscosity and high adhesion-solidification properties. The results demonstrated that the dust suppressant formed a network of multiple hydrogen bonding cross-linking and achieved effective adhesion and solidification of coal dust through various chemical reactions.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

First principle-based rate equation theory for the carbonation kinetics of CaO with CO2 in calcium looping

Jinzhi Cai, Zhenshan Li

Summary: A density functional theory-based rate equation was developed to predict the gas-solid reaction kinetics of CaO carbonation with CO2 in calcium looping. The negative activation energy of CaO carbonation close to equilibrium was accurately predicted through experimental validation.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Significant enhancement of high-temperature capacitive energy storage in dielectric films through surface self-assembly of BNNS coatings

Jianxiong Chen, Fuhao Ren, Ningning Yin, Jie Mao

Summary: This study presents an economically efficient and easily implementable surface modification approach to enhance the high-temperature electrical insulation and energy storage performance of polymer dielectrics. The self-assembly of high-insulation-performance boron nitride nanosheets (BNNS) on the film surface through electrostatic interactions effectively impedes charge injection from electrodes while promoting charge dissipation and heat transfer.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Medium entropy metal oxide induced *OH species targeted transfer strategy for efficient polyethylene terephthalate plastic recycling

Zijian Li, Zhaohui Yang, Shao Wang, Hongxia Luo, Zhimin Xue, Zhenghui Liu, Tiancheng Mu

Summary: This study reports a strategy for upgrading polyester plastics into value-added chemicals using electrocatalytic methods. By inducing the targeted transfer of *OH species, polyethylene terephthalate was successfully upgraded into potassium diformate with high purity. This work not only develops an excellent electrocatalyst, but also provides guidance for the design of medium entropy metal oxides.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

A novel environmental friendly and sustainable process for textile dyeing with sulphur dyes for cleaner production

Navneet Singh Shekhawat, Surendra Kumar Patra, Ashok Kumar Patra, Bamaprasad Bag

Summary: This study primarily focuses on developing a sulphur dyeing process at room temperature using bacterial Lysate, which is environmentally friendly, energy and cost effective, and sustainable. The process shows promising improvements in dye uptake and fastness properties.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Highly efficient and sustainable cationic polyvinyl chloride nanofibrous membranes for removal of E. coli and Cr (VI): Filtration and adsorption

Dengjia Shen, Hongyang Ma, Madani Khan, Benjamin S. Hsiao

Summary: This study developed cationic PVC nanofibrous membranes with high filtration and adsorption capability for the removal of bacteria and hexavalent chromium ions from wastewater. The membranes demonstrated remarkable performance in terms of filtration efficiency and maximum adsorption capacity. Additionally, modified nanofibrous membranes were produced using recycled materials and showed excellent retention rates in dynamic adsorption processes.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Concerted proton-coupled electron transfer promotes NiCoP nanowire arrays for efficient overall water splitting at industrial-level current density

Xiaoyan Wang, Zhikun Wang, Ben Jia, Chunling Li, Shuangqing Sun, Songqing Hu

Summary: Inspired by photosystem II, self-supported Fe-doped NiCoP nanowire arrays modified with carboxylate were constructed to boost industrial-level overall water splitting by employing the concerted proton-coupled electron transfer mechanism. The introduction of Fe and carboxyl ligand led to improved catalytic activity for HER and OER, and NCFCP@NF exhibited long-term durability for overall water splitting.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Self-limiting growth of thin dense LTA membranes boosts H2 gas separation performance

Pengyao Yu, Ge Yang, Yongming Chai, Lubomira Tosheva, Chunzheng Wang, Heqing Jiang, Chenguang Liu, Hailing Guo

Summary: Thin LTA zeolite membranes were prepared through secondary growth of nano LTA seeds in a highly reactive gel, resulting in membranes with superior permeability and selectivity in gas separation applications.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Prediction of phosphate adsorption amount, capacity and kinetics via machine learning: A generally physical-based process and proposed strategy of using descriptive text messages to enrich datasets

Baiqin Zhou, Huiping Li, Ziyu Wang, Hui Huang, Yujun Wang, Ruichun Yang, Ranran Huo, Xiaoyan Xu, Ting Zhou, Xiaochen Dong

Summary: The use of machine learning to predict the performance of specific adsorbents in phosphate adsorption shows great promise in saving time and revealing underlying mechanisms. However, the small size of the dataset and insufficient detailed information limits the model training process and the accuracy of results. To address this, the study employs a fuzzing strategy that replaces detailed numeric information with descriptive text messages on the physiochemical properties of adsorbents. This strategy allows the recovery of discarded samples with limited information, leading to accurate prediction of adsorption amount, capacity, and kinetics. The study also finds that phosphate uptake by adsorbents is generally through physisorption, with some involvement of chemisorption. The framework established in this study provides a practical approach for quickly predicting phosphate adsorption performance in urgent scenarios, using easily accessible information.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Absorption of hydrophobic volatile organic compounds in renewable vegetable oils and esterified fatty acids: Determination of gas-liquid partitioning coefficients as a function of temperature

Paula Alejandra Lamprea Pineda, Joren Bruneel, Kristof Demeestere, Lisa Deraedt, Tex Goetschalckx, Herman Van Langenhove, Christophe Walgraeve

Summary: This study evaluates the use of four esterified fatty acids and three vegetable oils as absorption liquids for hydrophobic VOCs. The experimental results show that isopropyl myristate is the most efficient liquid for absorbing the target VOCs.

CHEMICAL ENGINEERING JOURNAL (2024)