4.6 Article

Fe2O3@LaxSr1-xFeO3 Core- Shell Redox Catalyst for Methane Partial Oxidation

期刊

CHEMCATCHEM
卷 6, 期 3, 页码 790-799

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cctc.201301104

关键词

chemical looping; methane; partial oxidation; redox catalyst; reforming

资金

  1. U.S. National Science Foundation [CBET-1254351]
  2. Department of Defense's Defense University Research Instrumentation Program Project [61607-CH-RIP]
  3. North Carolina State University Start-Up Funds
  4. State of North Carolina
  5. National Science Foundation
  6. Div Of Chem, Bioeng, Env, & Transp Sys
  7. Directorate For Engineering [1254351] Funding Source: National Science Foundation

向作者/读者索取更多资源

Efficient and environmentally friendly conversion of methane into syngas is a topic of practical relevance for the production of hydrogen, chemicals, and synthetic fuels. At present, methane-derived syngas is produced primarily through the steam methane reforming processes. The efficiencies of such processes are limited owing to the endothermic steam methane reforming reaction and the high steam to methane ratio required by the reforming catalysts. Chemical looping reforming represents an alternative approach for methane conversion. In the chemical looping reforming scheme, a solid oxygen carrier or redox catalyst is used to partially oxidize methane to syngas. The reduced redox catalyst is then regenerated with air. The cyclic redox operation reduces the steam usage while simplifying the heat integration scheme. Herein, a new Fe2O3@LaxSr1-xFeO3 (LSF) core-shell redox catalyst is synthesized and investigated. Compared with several other commonly investigated iron-based redox catalysts, the newly developed core-shell redox catalyst is significantly more active and selective for syngas production from methane. It is also more resistant toward carbon formation and maintains high activity over cyclic redox operations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据