4.4 Article

PKC phosphorylates GluA1-Ser831 to enhance AMPA receptor conductance

期刊

CHANNELS
卷 6, 期 1, 页码 60-64

出版社

LANDES BIOSCIENCE
DOI: 10.4161/chan.18648

关键词

AMPA receptor; GluA1; GluR1; PKC; phosphorylation

资金

  1. NIH [NS068464]

向作者/读者索取更多资源

AMPA receptors mediate fast excitatory synaptic transmission in the brain, and are dynamically regulated by phosphorylation of multiple residues within the C-terminal domain. CaMKII phosphorylates Ser831 within the AMPA receptor GluA1 subunit to increase single channel conductance, and biochemical studies show that PKC can also phosphorylate this residue. In light of the discovery of additional PKC phosphorylation sites within the GluA1 C-terminus, it remains unclear whether PKC phosphorylation of Ser831 increases GluA1 conductance in intact receptors. Here, we report that the purified, catalytic subunit of PKC significantly increases the conductance of wild-type GluA1 AMPA receptors expressed in the presence of stargazin in HEK293T cells. Furthermore, the mutation GluA1-S831A blocks the functional effect of PKC. These findings suggest that GluA1 AMPA receptor conductance can be increased by activated CaMKII or PKC, and that phosphorylation at this site provides a mechanism for channel modulation via a variety of protein signaling cascades.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据