4.7 Article

Electrochemical aspects and in vitro biocompatibility of polypyrrole/TiO2 ceramic nanocomposite coatings on 316L SS for orthopedic implants

期刊

CERAMICS INTERNATIONAL
卷 39, 期 5, 页码 5639-5650

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ceramint.2012.12.080

关键词

Corrosion; Polypyrrole; Biocompatibility; Nanoceramic TiO2

向作者/读者索取更多资源

With a view to developing a smart coating combining both biocompatibifity and corrosion resistance over bioimplants, polypyrrole/TiO2 nanocomposite coatings were electrochemically synthesized by cyclic voltammetric technique on 316L stainless steel (SS) in an aqueous solution of oxalic acid. The presence of TiO2 nanoparticles in polypyrrole (PPy) matrix was confirmed using FT-IR spectroscopy and XRD analysis. The surface morphology of coated 316L SS substrates was observed by the Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and Transmission Electron Microscopy (TEM). Microhardness of coated 316L SS was examined by the Vickers hardness method. The electrochemical studies were carried out using Cyclic Polarization and Electrochemical Impedance Spectroscopy (EIS) measurements. In order to describe the biocompatibility, contact angle measurements and in vitro characterization were carried out in Simulated Body Fluid (SBF) solution. The results showed that the nanocomposite coatings exhibit superior biocompatibility and enhanced corrosion protection performance over 316L SS than that of pure polypyrrole coatings. (C) 2013 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据