4.7 Article

Control of hydroxyl group content in silica particle synthesized by the sol-precipitation process

期刊

CERAMICS INTERNATIONAL
卷 35, 期 3, 页码 1015-1019

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ceramint.2008.04.011

关键词

Hydroxyl groups; Hydrolysis; Condensation; Silica particle; Surface property

资金

  1. New Chemical Process Program, ITEP, Korea
  2. Korea Institute of Industrial Technology(KITECH) [2006-E-ID11-P-30-0-000, 2006-E-ID11-P-30] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)
  3. National Research Foundation of Korea [핵C6A1301, 2007-0054808] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

This study investigated the control of hydroxyl groups, one of key factors determining the surface properties of silica particles synthesized by the sol-precipitation of tetraethyl orthosilicate (TEOS). Thus, a thermal gravity analysis (TGA) was used to facilitate quantitative measurements of the hydroxyl groups on the silica particles, while BET and FT-IR were used to analyze the specific surface area and functional silane groups on the silica particles, respectively. In the sol-precipitation process, silanes that include various hydroxyl groups are formed as intermediates based on the hydrolysis and condensation of TEOS. Thus, NH3, as a basic catalyst initiating the nucleophilic substitution of TEOS, was found to accelerate the hydrolysis and increase the hydroxyl group content on the silica particles. Plus, the hydroxyl group content was also increased when increasing the concentrations of TEOS and water as the hydrolysis reactants. However, the hydroxyl group content was reduced when increasing the temperature, due to the promotion of condensation. Based on the weight loss of the particles according to the thermal analysis, the hydroxyl group content on the silica particles varied from 5.6-42.7 OH/nm(2) under the above reaction conditions. (C) 2008 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Chemistry, Multidisciplinary

Facile synthesis of graphite oxide/MIL-101(Cr) hybrid composites for enhanced adsorption performance towards industrial toxic dyes

The Ky Vo, Tra Phuong Trinh, Van Cuong Nguyen, Jinsoo Kim

Summary: In this study, a series of hybrid GrO/MIL-101(Cr) (GrO@MCr) nanocomposites were prepared via hydrothermal synthesis, showing increased adsorption capacities for organic pollutants MO and RB198. The adsorption mechanism was detailedly studied in this research.

JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY (2021)

Article Chemistry, Applied

Formation of structural defects within UiO-66(Zr)-(OH)2 framework for enhanced CO2 adsorption using a microwave-assisted continuous-flow tubular reactor

The Ky Vo, Van Cuong Nguyen, Duong Tuan Quang, Bum Jun Park, Jinsoo Kim

Summary: The rapid construction of defects in metal-organic frameworks using microwave-assisted reactors can significantly impact porosity and CO2 adsorption capabilities of the material. The concentration of defects influences the amount of CO2 uptake and selectivity, surpassing those of conventionally prepared materials.

MICROPOROUS AND MESOPOROUS MATERIALS (2021)

Article Chemistry, Multidisciplinary

Ni,Ti-co-doped MoO2 nanoparticles with high stability and improved conductivity for hole transporting material in planar metal halide perovskite solar cells

Jin Hyuck Heo, Kyungmin Im, Hyong Joon Lee, Jinsoo Kim, Sang Hyuk Im

Summary: Ni,Ti-co-doped MoO2 nanoparticles were synthesized with excellent moisture stability and improved conductivity for use as hole transporting material in metal halide perovskite solar cells. The Ni,Ti-doped MoO2 showed better reduction stability and achieved a power conversion efficiency of 18.1% under standard conditions. Additionally, the unencapsulated Ni,Ti-co-doped MoO2 showed only a 12-13% degradation after a stability test, indicating promising potential for practical applications.

JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY (2021)

Article Energy & Fuels

Spray pyrolysis-assisted synthesis of hollow cobalt nitrogen-doped carbon catalyst for the performance enhancement of membraneless fuel cells

Jungyeon Ji, Kyungmin Im, Heeyeon An, Sung Jong Yoo, Yongjin Chung, Jinsoo Kim, Yongchai Kwon

Summary: Hollow cobalt nitrogen-doped carbon (H-CoNC) is proposed as an anodic catalyst for membraneless hydrogen peroxide fuel cells (HPFC) and enzymatic biofuel cells (EBC), demonstrating superior catalytic activity for hydrogen peroxide oxidation reaction (HPOR) due to its porous and hollow-shell structure, along with a large amount of isolated Co atoms and coordinate bonds with Co and nitrogen (Co-N-4). The improved mass transfer to the active site results in enhanced current density at the bioanode and higher maximum power density (MPD) for both EBC and HPFC when using H-CoNC compared to conventionally synthesized catalysts.

INTERNATIONAL JOURNAL OF ENERGY RESEARCH (2022)

Article Chemistry, Applied

Facile synthesis of spray pyrolysis-derived CuCl/γ-Al2O3 microspheres and their properties for CO adsorption and CO/CO2 separation

The Ky Vo, Van Nhieu Le, Duong Tuan Quang, Jinsoo Kim

Summary: This study developed a facile and scalable synthesis method for CuCl@gamma-Al2O3 composite microspheres for CO storage and separation. By adjusting the CA/boehmite ratio, fine-tuning of mesopores and pore volumes was achieved, leading to improved CO sorption and CO/CO2 selectivity.

MICROPOROUS AND MESOPOROUS MATERIALS (2021)

Article Nanoscience & Nanotechnology

Freeze Granulation of Nanoporous UiO-66 Nanoparticles for Capture of Volatile Organic Compounds

Van Nhieu Le, Daekeun Kim, Jinsoo Kim, Mohd Roslee Othman

Summary: Nanoporous UiO-66 spherical beads prepared using PVA binder improved the mechanical strength for toluene capture without affecting crystalline nature and micropore structures. However, the PVA binding reduced the BET surface area and total pore volume, resulting in a slight decrease in toluene adsorption efficacy by limiting toluene exposure to micropores.

ACS APPLIED NANO MATERIALS (2021)

Article Chemistry, Physical

Synthesis of hollow Fe, Co, and N-doped carbon catalysts from conducting polymer-metal-organic-frameworks core-shell particles for their application in an oxygen reduction reaction

Quoc Hao Nguyen, Kyungmin Im, Jinsoo Kim

Summary: In this study, hollow Fe, Co, and nitrogen co-doped carbon catalyst with high surface area and uniformly distributed Fe and Co species was prepared, demonstrating excellent ORR performance, stability, and tolerance to methanol crossover.

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY (2022)

Article Chemistry, Physical

A highly stable Tungsten-Doped TiO2-Supported platinum electrocatalyst for oxygen reduction reaction in acidic media

Toan Minh Pham, Kyungmin Im, Jinsoo Kim

Summary: This study presented a tungsten-modified titanium dioxide support for platinum catalyst, which showed improved catalytic activity and stability, offering a potential solution to the carbon corrosion issue in proton exchange membrane fuel cells.

APPLIED SURFACE SCIENCE (2023)

Article Chemistry, Physical

Spray pyrolysis facilitated construction of carbon nanotube-embedded hollow CoFe electrocatalysts demonstrating excellent durability and activity for the oxygen reduction reaction

Sion Oh, Kyungmin Im, Jinsoo Kim

Summary: Developments in fuel cell technology have led to the design of efficient electrocatalysts for the oxygen reduction reaction (ORR). Metal-nitrogen-carbon (M-N-C) catalysts, particularly carbon nanotube-encapsulated hollow Co-Fe-NC electrocatalysts, show promising catalytic activity and excellent selectivity for ORR. However, the synthesis of carbon-based metal electrocatalysts with evenly distributed active sites and well-controlled structures remains challenging.

JOURNAL OF ALLOYS AND COMPOUNDS (2023)

Article Chemistry, Multidisciplinary

Non-precious metal catalysts supported by activated carbon and TiO2-SiO2: Facile preparation and application for highly effective hydrodeoxygenation of syringol-a lignin-derived model compound

Thuan Anh Vo, Yoonmo Koo, Jinsoo Kim, Seung-Soo Kim

Summary: This study characterized non-precious metal catalysts over activated carbon and TiO2-SiO2 supports loaded via incipient wetness impregnation and spray pyrolysis. The research found that activated carbon exhibited better performance in syringol conversion and hydrocarbon selectivity compared to TiO2-SiO2. Additionally, the Ni catalyst showed more effective hydrodeoxygenation performance compared to Fe and NiFe catalysts. The study provides a promising potential for the utilization of non-precious metals and biomass-derived activated carbon in removing oxygen from bio-oil model compounds, contributing to sustainable renewable energy development.

JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY (2023)

Article Chemistry, Multidisciplinary

Carbon dioxide capture from industrial flue gas surrogate by multi-cyclical PSA mediated by microporous palm kernel shell and ZIF-8 media

Hind Jihad Kadhim Shabbani, Ammar Ali Abd, Tharveen Raj Rajalingam, Jinsoo Kim, Mohd Roslee Othman, Zuchra Helwani

Summary: This study investigates the use of microporous APKS and ZIF-8 adsorbents for capturing carbon dioxide from flue gas surrogate. The lab simulated and experimented with the purity and recovery of N2 and CO2 in the product and waste stream. The results show that factors like adsorbent type, adsorption times, and CO2 concentration influence the N2 purity in the product stream, while CO2 feed compositions, adsorbent type, and pressure swing operation affect the purity and recovery of CO2 in the waste stream.

JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY (2023)

Article Chemistry, Multidisciplinary

Hydrodeoxygenation of stearic acid over zeolite-MOF composite-supported Pt catalysts

Dieu-Phuong Phan, Toan Minh Pham, Hojin Lee, My Ha Tran, Eun Duck Park, Jinsoo Kim, Eun Yeol Lee

Summary: A series of zeolite-porous metal-organic framework composites with different Pt loadings were synthesized via a two-step approach. The Pt-loaded composites showed improved acidity compared to the parent materials and demonstrated high catalytic performance and stability in the selective hydrodeoxygenation process.

JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY (2023)

Article Chemistry, Applied

Facile synthesis of bimetallic MIL-100(Fe, Al) for enhancing CO2 Adsorption performance

Van Nhieu Le, Van Cuong Nguyen, Huu Trung Nguyen, Hoai Duc Tran, Thach N. Tu, Woo-Sik Kim, Jinsoo Kim

Summary: Bimetallic metal-organic frameworks with two different metal species demonstrate higher effectiveness in CO2 capture and separation performance than their monometallic counterparts. A series of bimetallic MIL-100(Fe, Al) was synthesized by adding Fe and Al metal precursors with various molar ratios. Among the investigated samples, MIL-100(Fe, Al)#2 showed the highest CO2 adsorption capacity of 3.27 mmol g-1 with an IAST-CO2/N2 selectivity of 76.5 at 25 degrees C and 1 bar. This facile synthetic route has the potential to enhance CO2 adsorption performance.

MICROPOROUS AND MESOPOROUS MATERIALS (2023)

Article Energy & Fuels

Effect of thermal dynamics and column geometry of pressure swing adsorption on hydrogen production from natural gas reforming

Hind Jihad Kadhim Shabbani, Ammar Ali Abd, Masad Mezher Hasan, Zuchra Helwani, Jinsoo Kim, Mohd Roslee Othman

Summary: The study investigated hydrogen purification from a surrogate gas using spent coffee grounds as a medium. The process was examined under isothermal, adiabatic, and non-adiabatic conditions using Aspen adsorption software. The results showed that spent coffee grounds can effectively purify hydrogen, and a rectangular non-adiabatic plate column can enhance the purification process by improving purity and recovery responses.

GAS SCIENCE AND ENGINEERING (2023)

Article Nanoscience & Nanotechnology

Microporous Mo-UiO-66 Metal-Organic Framework Nanoparticles as Gas Adsorbents

Jaehyung Choi, Kye Sang Yoo, Daekeun Kim, Jinsoo Kim, Mohd Roslee Othman

Summary: This study successfully developed microporous Mo-UiO-66 nanoparticles through a solvothermal procedure, with a requirement of 40% excess Mo content. The resulting octahedron crystals had a size of about 80 nm and a large surface area of 1158 m(2)/g.

ACS APPLIED NANO MATERIALS (2021)

暂无数据