4.6 Article

Moesin signalling induces F9 teratocarcinoma cells to differentiate into primitive extraembryonic endoderm

期刊

CELLULAR SIGNALLING
卷 20, 期 1, 页码 163-175

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.cellsig.2007.10.011

关键词

moesin; FERM domain; ERM proteins; F9 cells; EC cells; primitive endoderm; EMT; beta-catenin; Rho; zebrafish

向作者/读者索取更多资源

The mouse F9 teratocarcinoma cell line is a model that can be manipulated to imitate one of the earliest epithelial-mesenchymal transitions in mouse development. When cells are treated with Retinoic Acid they differentiate into primitive endoderm and into parietal endoderm with the addition of dibutyryl cAMP. Parietal endoderm also develops when undifferentiated cells express a constitutively active (CA) form of Got 13(Q226L). Differentiation is accompanied by a translocation of beta-catenin to the nucleus and considerable changes to the cytoskeleton and cell morphology. ERM proteins facilitate rearrangements to the F-actin cytoskeleton, and at least one, moesin, is essential for cell survival. In this study we found that moesin translocated to the nucleus during RA-induced differentiation, and sequence analysis identified putative nuclear localization signals in the protein. In the absence of RA, transient over-expression of rat moesin or the distantly related zebrafish homologue in F9 cells induced primitive endoderm. Furthermore, no apparent beta-catenin was seen in the nucleus of cells over-expressing zebrafish moesin. Our previous results have shown that depleting F9 cells of moesin using an antisense morpholino strategy caused them to detach from the substrate unless they expressed CA-G alpha 13(Q226L). This CA-G alpha 13 signalling maintained cell survival, but at the expense of differentiation. We now report that over-expressing zebrafish moesin in mouse moesin-depleted F9 cells not only ensured cell survival, but also induced differentiation to primitive endoderm. Together, the results suggest anew role for moesin, acting in a signalling pathway facilitating the differentiation of extraembryonic endoderm. (C) 2007 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据