4.5 Article

Cellular Epigenetic Modifications of Neural Stem Cell Differentiation

期刊

CELL TRANSPLANTATION
卷 18, 期 10-11, 页码 1197-1211

出版社

SAGE PUBLICATIONS INC
DOI: 10.3727/096368909X12483162197204

关键词

Neural progenitor cells; DNA methylation; Histone code; DNMT; MBD1; 5-aza-Cytidine

资金

  1. [AA016698]
  2. NATIONAL INSTITUTE ON ALCOHOL ABUSE AND ALCOHOLISM [R01AA016698] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Emerging information indicates that epigenetic modification (i.e., histone code and DNA methylation) may be integral to the maintenance and differentiation of neural stein cells (NSCs), but their actual involvement has not yet been illustrated. In this study, we demonstrated the dynamic nature of epigenetic marks during the differentiation of quiescent adult rat NSCs in neurospheres. A subpopulation of OCT4(+) NSCs in the neurosphere contained histone marks, trimethylated histone 3 on lysine 27 (3me-H3K27), 2me-H3K4, and acetylated H4 (Ac-H4). A major decrease of these marks was found prior to or during differentiation, and was further diminished or reprogrammed in diverse subpopulations of migrated NSCs expressing nestin or beta-III-tubulin. The DNA methylation mark 5-methyl-cytosine (5-MeC), and DNA methyltransferase (DNMT) 1 and 3a expression also correlated to the state of differentiation; they were highly present in undifferentiated NSCs but downregulated in migrated populations. In contrast, DNA methyl-CpG-binding protein (MBD1) was low in undifferentiated NSCs in neurospheres, but highly appeared in differentiating NSCs. Furthermore, we found an outward translocation of DNA methylation marker 5-MeC, DNMT1, DNMT3a, and MBD1 in NSCs as differentiation began and proceeded; 5-MeC from homogeneous nucleus to peripheral nucleus, and DMNT1 a and 3a from nuclear to cytoplasm, indicating chromatin remodeling. Treatment with DNA methylation inhibitor, 5-aza-cytidine, altered DNA methylation and disrupted migration as indicated by a reduction of migrated neurons and differentiation. These results indicate that chromatin is dynamically remodeled when NSCs transform from the quiescent state to active growth, and that DNA methylation modification is essential for neural stem cell differentiation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据