4.6 Article

The retinoblastoma protein and PML collaborate to organize heterochromatin and silence E2F-responsive genes during senescence

期刊

CELL CYCLE
卷 13, 期 4, 页码 641-651

出版社

LANDES BIOSCIENCE
DOI: 10.4161/cc.27527

关键词

cell cycle; senescence; E2F; transcription; heterochromatin; PML

资金

  1. CIHR [MOP 64253]

向作者/读者索取更多资源

Cellular senescence is characterized by silencing of genes involved in DNA replication and cell cycle progression. Stable repression is crucial for preventing inappropriate DNA synthesis and the maintenance of a prolonged senescent state. Many of these genes are targets for E2F transcription factors. The pRB pathway plays a major role in senescence by directly repressing E2Fs and also by regulating chromatin at the promoters of E2F target genes using its LXCXE cleft-dependent interactions. In this study, we sought to investigate the mechanisms by which pRB stably silences E2F target gene transcription during cellular senescence. We report that in mouse embryonic fibroblasts, endogenous promyelocytic leukemia protein (PML) associates with E2F target genes in a pRB LXCXE-dependent manner during HrasV12-induced senescence. Furthermore, using a PML-IV-induced senescence model, we show that the pRB LXCXE binding cleft is essential for PML association with gene promoters, silencing of E2F target genes, and stable cell cycle exit. Binding assays show that pRB can interact with PML specifically during senescence, suggesting that signaling events in senescence regulate assembly of PML and pRB to establish heterochromatin and create a permanent cell cycle arrest.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据