4.6 Article

Roles of junk phosphorylation in modulating biomolecular association of phosphorylated proteins?

期刊

CELL CYCLE
卷 9, 期 7, 页码 1276-1280

出版社

TAYLOR & FRANCIS INC
DOI: 10.4161/cc.9.7.11066

关键词

phospho-proteomics; phosphorylation sites; protein phosphorylation; kinase-substrate relationship; protein-protein interactions; biomolecular association; site conservation

向作者/读者索取更多资源

Protein phosphorylation dynamically regulates cellular activities in response to environmental cues. Sequence conservation analysis of recent proteome-wide phosphorylation data revealed that many previously unidentified phosphorylation sites are not well-conserved leading to the proposal that many are non-functional. However, this is based on the assumption that protein phosphorylation modulates protein function through specific position on protein sequence. Based on emerging understanding on phospho-regulation of cellular activities, we argue, with examples, that non-positionally conserved phosphorylation sites can very well be functional. We previously identified phosphorylation events that need not be conserved at same positions across orthologous proteins but are likely maintained by evolutionary conserved signaling networks through orthologous kinases. We found that proteins with such conserved phosphorylation patterns are statistically over-represented with protein- and DNA-binding annotation. Here, we further correlated these proteins with protein- protein interaction data from an independent systematic study and observed they indeed interact frequently with other proteins. Hence, we speculate that non-positionally conserved phosphorylation site could be modulating biomolecular association of phosphorylated proteins possibly through fine-tuning protein's bulk electrostatic charge and through creating binding sites for phospho-binding interaction domains. We, therefore, advocate the development of complementary evolutionary approaches to interpret physiological important sites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据