4.8 Article

A Prolyl-Isomerase Mediates Dopamine-Dependent Plasticity and Cocaine Motor Sensitization

期刊

CELL
卷 154, 期 3, 页码 637-650

出版社

CELL PRESS
DOI: 10.1016/j.cell.2013.07.001

关键词

-

资金

  1. NIH [DA011742, DA010309, MH084020, MH51106, NS050274, CA110940]
  2. Howard Hughes Medical Institute
  3. Office of Basic Energy Sciences, Catalysis Science Program
  4. U.S. Department of Energy [DE-FG02-05ER15699]
  5. U.S. Department of Energy (DOE) [DE-FG02-05ER15699] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

Synaptic plasticity induced by cocaine and other drugs underlies addiction. Here we elucidate molecular events at synapses that cause this plasticity and the resulting behavioral response to cocaine in mice. In response to D1-dopamine-receptor signaling that is induced by drug administration, the glutamate-receptor protein metabotropic glutamate receptor 5 (mGluR5) is phosphorylated by microtubule-associated protein kinase (MAPK), which we show potentiates Pin1-mediated prolyl-isomerization of mGluR5 in instances where the product of an activity-dependent gene, Homer1a, is present to enable Pin1-mGluR5 interaction. These biochemical events potentiate N-methyl-D-aspartate receptor (NMDAR)-mediated currents that underlie synaptic plasticity and cocaine-evoked motor sensitization as tested in mice with relevant mutations. The findings elucidate how a coincidence of signals from the nucleus and the synapse can render mGluR5 accessible to activation with consequences for drug-induced dopamine responses and point to depotentiation at corticostriatal synapses as a possible therapeutic target for treating addiction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据