4.8 Article

Inheritance of Stress-Induced, ATF-2-Dependent Epigenetic Change

期刊

CELL
卷 145, 期 7, 页码 1049-1061

出版社

CELL PRESS
DOI: 10.1016/j.cell.2011.05.029

关键词

-

资金

  1. Ministry of Education, Culture, Sports, Science, and Technology
  2. Grants-in-Aid for Scientific Research [22125001, 23370079, 23770010, 22125005] Funding Source: KAKEN

向作者/读者索取更多资源

Atf1, the fission yeast homolog of activation transcription factor-2 (ATF-2), contributes to heterochromatin formation. However, the role of ATF-2 in chromatin assembly in higher organisms remains unknown. This study reveals that Drosophila ATF-2 (dATF-2) is required for heterochromatin assembly, whereas the stress-induced phosphorylation of dATF-2, via Mekk1-p38, disrupts heterochromatin. The dATF-2 protein colocalized with HP1, not only on heterochromatin but also at specific loci in euchromatin. Heat shock or osmotic stress induced phosphorylation of dATF-2 and resulted in its release from heterochromatin. This heterochromatic disruption was an epigenetic event that was transmitted to the next generation in a non-Mendelian fashion. When embryos were exposed to heat stress over multiple generations, the defective chromatin state was maintained over multiple successive generations, though it gradually returned to the normal state. The results suggest a mechanism by which the effects of stress are inherited epigenetically via the regulation of a tight chromatin structure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据