4.6 Article

Generation of reactive oxygen species by grape seed extract causes irreparable DNA damage leading to G2/M arrest and apoptosis selectively in head and neck squamous cell carcinoma cells

期刊

CARCINOGENESIS
卷 33, 期 4, 页码 848-858

出版社

OXFORD UNIV PRESS
DOI: 10.1093/carcin/bgs019

关键词

-

类别

资金

  1. National Center for Complementary and Alternative Medicine [AT003623]
  2. National Cancer Institute, National Institutes of Health [CA91883]

向作者/读者索取更多资源

Head and neck squamous cell carcinoma (HNSCC) accounts for 6% of all malignancies in USA and unfortunately the recurrence of secondary primary tumors and resistance against conventional treatments decrease the overall 5 year survival rate in HNSCC patients. Thus, additional approaches are needed to control HNSCC. Here, for the first time, employing human HNSCC Detroit 562 and FaDu cells as well as normal human epidermal keratinocytes, we investigate grape seed extract (GSE) efficacy and associated mechanism in both cell culture and nude mice xenografts. GSE selectively inhibited the growth and caused cell cycle arrest and apoptotic death in both Detroit 562 and FaDu cells by activating DNA damage checkpoint cascade, including ataxia telangiectasia mutated/ataxia telangiectasia-Rad3-related-checkpoint kinase 1/2-cell division cycle 25C as well as caspases 8, 9 and 3. Consistent with these results, GSE treatment resulted in a strong DNA damage and a decrease in the levels of DNA repair molecules breast cancer gene 1 and Rad51 and DNA repair foci. GSE-caused accumulation of intracellular reactive oxygen species was identified as a major mechanism of its effect for growth inhibition, DNA damage and apoptosis, which was remarkably reversed by antioxidant N-acetylcysteine. GSE feeding to nude mice decreased Detroit 562 and FaDu xenograft tumor growth by 67 and 65% (P < 0.001), respectively. In immunohistochemical analysis, xenografts from GSE-fed groups showed decreased proliferation but increased DNA damage and apoptosis. Together, these findings show that GSE targets both DNA damage and repair and provide mechanistic insights for its efficacy selectively against HNSCC both in cell culture and mouse xenograft, supporting its translational potential against HNSCC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据