4.8 Article

Effective control of nanodefects in multiwalled carbon nanotubes by acid treatment

期刊

CARBON
卷 78, 期 -, 页码 121-129

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2014.06.055

关键词

-

资金

  1. China Scholarship Council

向作者/读者索取更多资源

The defect-type evolution and gradual increase in nanodefects in the outer walls of multiwalled carbon nanotubes (MWCNTs) in a chemically oxidizing environment were thoroughly investigated using a mixture of sulfuric acid (H2SO4) and nitric acid (HNO3). A fairly low temperature of 323 K was employed for the acid treatment, and this limited the reaction rate to provide a mild acidic environment for gradual chemical oxidation compared to commonly used treatment conditions. High-resolution transmission electron microscopy (HRTEM) observations clearly demonstrated the formation of groove-type defects in the outer walls of MWCNTs in the early period around 0.5-3 h, followed by a morphological change into circumference-type defects and further into unzipped graphene nanoribbons. A unique parabolic variation in the intensity ratio of D and G bands (I-D/I-G) was observed. This observation supports the gradual oxidation of graphitic walls with increasing acid treatment time and corresponds well with the formation and evolution of nanodefects. Herein, the appropriate acid treatment time that would result in an effective number of nanodefects via suitable carboxyl functionalization, providing preferential nanocarbide sites for interfacial improvement as well as uniform dispersibility of MWCNTs, has been discussed. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据