4.8 Article

Combined molecular dynamics-finite element multiscale modeling of thermal conduction in graphene epoxy nanocomposites

期刊

CARBON
卷 60, 期 -, 页码 356-365

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2013.04.048

关键词

-

资金

  1. FNR of Luxembourg via the AFR Grants [PHD-09-016]

向作者/读者索取更多资源

We developed a multiscale scheme using molecular dynamics (MD) and finite element (FE) methods for evaluating the effective thermal conductivity of graphene epoxy nanocomposites. The proposed hierarchical multiscale approach includes three different scales. First, we used MD simulations for the investigation of thermal conduction in graphene epoxy assembly at atomic scale. Our results suggest that thermal conductivity of single layer graphene decline by around 30% in epoxy matrix for two different hardener chemicals. Using MD, we also calculated thermal boundary conductance (TBC) between crosslinked epoxy and graphene sheet. In the next step, using the results obtained by the MD method, we developed FE based representative volume elements (RVE) of the nanocomposite in order to evaluate the thermal conductivity at the microscale. Finally,,nanocomposite effective thermal conductivity was obtained using FE homogenization of an ensemble of microscale RVEs. The validity of the proposed approach was confirmed by comparing predicted results with experimental results in the literature. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据