4.5 Article

Characterization of a laminaribiose phosphorylase from Acholeplasma laidlawii PG-8A and production of 1,3-β-D-glucosyl disaccharides

期刊

CARBOHYDRATE RESEARCH
卷 361, 期 -, 页码 49-54

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.carres.2012.08.006

关键词

1,3-beta-D-Glucosyl disaccharides; Glycoside hydrolase family 94; Laminaribiose phosphorylase; Reverse phosphorolysis; Substrate inhibition

资金

  1. MEXT's program 'Promotion of Environmental Improvement for Independence of Young Researchers' under Special Coordination Funds for Promoting Science and Technology
  2. Grants-in-Aid for Scientific Research [24780095] Funding Source: KAKEN

向作者/读者索取更多资源

We identified a glycoside hydrolase family 94 homolog (ACL0729) from Acholeplasma laidlawii PG-8A as a laminaribiose (1,3-beta-D-glucobiose) phosphorylase (EC 2.4.1.31). The recombinant ACL0729 produced in Escherichia coli catalyzed phosphorolysis of laminaribiose with inversion of the anomeric configuration in a typical sequential bi bi mechanism releasing alpha-D-glucose 1-phosphate and D-glucose. Laminaritriose (1,3-beta-D-glucotriose) was not an efficient substrate for ACL0729. The phosphorolysis is reversible, enabling synthesis of 1,3-beta-D-glucosyl disaccharides by reverse phosphorolysis with strict regioselectivity from alpha-D-glucose 1-phosphate as the donor and suitable monosaccharide acceptors (D-glucose, 2-deoxy-D-arabino-hexopyranose, D-xylose, D-glucuronic acid, 1,5-anhydro-D-glucitol, and D-mannose) with C-3 and C-4 equatorial hydroxyl groups. The D-glucose and 2-deoxy-D-arabino-hexopyranose caused significantly strong competitive substrate inhibition compared with other glucobiose phosphorylases reported, in which the acceptor competitively inhibited the binding of the donor substrate. By contrast, none of the examined disaccharides served as acceptor in the synthetic reaction. (C) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据