4.8 Article

DLC1 Interaction with S100A10 Mediates Inhibition of In Vitro Cell Invasion and Tumorigenicity of Lung Cancer Cells through a RhoGAP-Independent Mechanism

期刊

CANCER RESEARCH
卷 71, 期 8, 页码 2916-2925

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-10-2158

关键词

-

类别

资金

  1. National Cancer Institute, NIH

向作者/读者索取更多资源

The DLC1 gene encodes a Rho GTPase-activating protein (RhoGAP) that functions as a tumor suppressor in several common human cancers. The multidomain structure of DLC1 enables interaction with a number of other proteins. Here we report that the proinflammatory protein S100A10 (also known as p11), a key cell surface receptor for plasminogen which regulates pericellular proteolysis and tumor cell invasion, is a new binding partner of DLC1 in human cells. We determined that the 2 proteins colocalize in the cell cytoplasm and that their binding is mediated by central sequences in the central domain of DLC1 and the C-terminus of S100A10. Because the same S100A10 sequence also mediates binding to Annexin 2, we found that DLC1 competed with Annexin 2 for interaction with S100A10. DLC1 binding to S100A10 did not affect DLC1's RhoGAP activity, but it decreased the steady-state level of S100A10 expression in a dose-dependent manner by displacing it from Annexin 2 and making it accessible to ubiquitin-dependent degradation. This process attenuated plasminogen activation and resulted in inhibition of in vitro cell migration, invasion, colony formation, and anchorage-independent growth of aggressive lung cancer cells. These results suggest that a novel GAP-independent mechanism contributes to the tumor suppressive activity of DLC1, and highlight the importance and complexity of protein-protein interactions involving DLC1 in certain cancers. Cancer Res; 71(8); 2916-25. (C)2011 AACR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据