4.4 Article

Accumulation and distribution of doxorubicin in tumour spheroids: the influence of acidity and expression of P-glycoprotein

期刊

CANCER CHEMOTHERAPY AND PHARMACOLOGY
卷 68, 期 5, 页码 1179-1190

出版社

SPRINGER
DOI: 10.1007/s00280-011-1598-8

关键词

P-glycoprotein; Doxorubicin; Solid tumours; Bioenergetic metabolism; Tumour spheroid; Cancer chemotherapy; Drug resistance; Hypoxia; Tumour acidity

资金

  1. Cancer Research UK [SP1861/0401]

向作者/读者索取更多资源

The intra-tumour distribution of anticancer drugs remains an important, but often under-estimated, influence on drug efficacy. Tumour acidity and the presence of efflux pumps were examined for their influence on the distribution of doxorubicin in a solid tumour model. Anticancer drug distribution and overall accumulation was measured in tumour spheroids (TS) of varying sizes. The distribution profiles were examined in normoxic and hypoxic TS, the latter generating metabolic acidosis. Finally, the drug distribution profiles were related to efficacy using radial outgrowth assays. In large tumour spheroids (TS) (d similar to 500 mu m), intracellular accumulation of doxorubicin was restricted to cells in the outermost layers and failed to accumulate within the viable cells in the 'intermediate' hypoxic zone. A similar profile was obtained for another protonatable amine, 7-AAD. In contrast, the distribution of the non-ionisable drug (at physiological pH) BODIPY-Taxol was uniform throughout the TS. In order to independently model the hypoxic and normoxic zones of TS, we compared drug accumulation in small entirely normoxic TS (d similar to 200 mu m) with equivalent sized ones exposed to hypoxia in an anaerobic chamber. Exposure of TS to hypoxia caused a considerable reduction in the pH of the bathing medium and lower tissue accumulation of doxorubicin. Interstitial acidity reduces the proportion of doxorubicin in the non-ionised form. In TS, the accumulation and distribution of doxorubicin was influenced by both the expression of P-glycoprotein and hypoxia-induced acidity. Therefore, optimisation of doxorubicin chemotherapy for hypoxic tumours will require circumvention of both of these crucial pharmacokinetic determinants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据