4.6 Review

Nucleic acid amplification-based methods for microRNA detection

期刊

ANALYTICAL METHODS
卷 7, 期 6, 页码 2258-2263

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4ay02938k

关键词

-

资金

  1. NSFC [21025521, 21205034, 21190041, 91317312, 21405041, 21307029, 21221003]
  2. Doctoral Fund of Ministry of Education of China [20120161120032]
  3. Hunan Provincial NSFC [13JJ4031]
  4. Fundamental Research Funds for the Central Universities
  5. Young Scholar Support Program of Hunan University

向作者/读者索取更多资源

MicroRNAs (miRNAs) are quite short single-stranded RNA molecules playing crucial roles in many biological processes and recognized as potential diagnostic biomarkers as well as targets for drug discovery in cancers. It has fueled a great need for the development of highly sensitive and selective detection methods for miRNAs. Many nucleic acid amplification technologies are demonstrated methods which have exhibited great potential for the development of simple, sensitive, specific and high-throughput methods for the detection of miRNA. Herein, we review the basic principles of five types of nucleic acid amplification-based miRNA assay methods that have been established in recent three years. Sensitive miRNA detection based on polymerase chain reaction, rolling circle amplification, strand displacement amplification, duplex-specific nuclease signal amplification, and hybridization chain reaction techniques is discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Chemistry, Analytical

Magnetic mesoporous Fe3O4@nSiO2@mSiO2 nanoparticles for high-throughput mass spectrometry detection of hydrolyzed products of organophosphorus nerve agents

Gang Qu, Yuxin Zhao, Qiaoli Zhang, Jina Wu, Xiaosen Li, Yang Yang, Shilei Liu

Summary: In this study, magnetic mesoporous materials combined with real-time in situ mass spectrometry were used for the high-throughput detection of hydrolyzed products of organophosphorus nerve agents. The method showed good linearity, low limits of detection and quantification, and high extraction recoveries. The magnetic preparation method used was quick, cost-effective, rugged, and safe. The results demonstrated the potential of this method for rapid and efficient determination of the target analytes in environmental samples.

ANALYTICAL METHODS (2024)

Article Chemistry, Analytical

Voltammetric methods for electrochemical characterization and quantification of artemether-based antimalarials

Anna Hildebrand, Mariam Merchant, Danny O'Hare

Summary: Substandard and falsified artemisinin derivatives in antimalarials have caused significant deaths and economic losses. This study evaluates the feasibility of voltammetric methods for identifying and quantifying artemether. The findings suggest that electrochemical analysis shows promise as a method for artemether identification and quantification.

ANALYTICAL METHODS (2024)

Article Chemistry, Analytical

An impedimetric immunosensor for diagnosis of Brazilian spotted fever in blood plasma

Marx Osorio Araujo Pereira, Alvaro Ferreira Junior, Edson Silvio Batista Rodrigues, Helena Mulser, Giovanna Nascimento de Mello e Silva, Wallans Torres Pio dos Santos, Eric de Souza Gil

Summary: Brazilian spotted fever (BSF) is a serious and rapidly evolving disease. A new impedimetric immunosensor was developed for rapid diagnosis by measuring specific antibodies in plasma. The sensor demonstrated selectivity and accuracy, and has potential for important applications in diagnostic testing.

ANALYTICAL METHODS (2024)

Article Chemistry, Analytical

Method validation for (ultra)-trace element concentrations in urine for small sample volumes in large epidemiological studies: application to the population-based epidemiological multi-ethnic study of atherosclerosis (MESA)

Kathrin Schilling, Ronald A. Glabonjat, Olgica Balac, Marta Galvez-Fernandez, Arce Domingo-Relloso, Vesna Slavkovich, Jeff Goldsmith, Miranda R. Jones, Tiffany R. Sanchez, Ana Navas-Acien

Summary: Analysis of trace elements in urine is an important tool for assessing exposures, diagnosing nutritional status, and guiding public health and healthcare intervention. This study provides a sensitive method for analyzing 18 elements in urine samples, using only 100 μL. The results show good accuracy and sensitivity of the method.

ANALYTICAL METHODS (2024)

Article Chemistry, Analytical

Selective purification and rapid quantitative detection of spores using a stepped magnetic flow device

Mengya Li, Shijie Liu, Shiliang Guo, Dong Liang, Miaoyun Li, Yaodi Zhu, Lijun Zhao, Jong-Hoon Lee, Gaiming Zhao, Yangyang Ma, Yanxia Liu

Summary: In this study, a magnetic flow device was developed to purify spores in a culture medium system. The device used magnetic nanoparticles to absorb vegetative cells, separating them from the spores. The achieved purity of the collected spores was over 95%. The study also demonstrated a rapid quantitative detection method using Raman spectroscopy.

ANALYTICAL METHODS (2024)

Article Chemistry, Analytical

Construction of a molecularly imprinted fluorescent sensor based on an amphiphilic block copolymer-metal-organic framework for the detection of oxytetracycline in milk

Wanqiong Liu, Zixuan Wu, Jianwei Peng, Zebin Xu, Yong Liang

Summary: Metal-organic frameworks (MOFs) are effective carriers for molecular imprinting, but their poor dispersibility in aqueous solution is a significant drawback. In this study, we have applied amphiphilic block copolymers and molecularly imprinted technology on MOFs to improve the hydrophilicity of molecularly imprinted fluorescent materials.

ANALYTICAL METHODS (2024)