4.7 Article

The complex net effect of reciprocal interactions and recruitment facilitation maintains an intertidal kelp community

期刊

JOURNAL OF ECOLOGY
卷 104, 期 1, 页码 33-43

出版社

WILEY-BLACKWELL
DOI: 10.1111/1365-2745.12495

关键词

aquatic plant ecology; benthic; environmental gradients; macroalgae; marine; plant-plant interactions; positive interactions

资金

  1. NSF [OCE07-26983, OCE07-27611, OCE10-61233, OCE10-61530, OCE15-19401]
  2. EPA STAR Graduate Research Fellowship [FP917429]
  3. Oregon State University's Integrative Biology Research Funds
  4. Sigma Xi Grant-in-Aid of Research
  5. O.S.U
  6. Mellon Foundation
  7. Valley Foundation
  8. Packard Foundation
  9. Moore Foundation
  10. Direct For Biological Sciences [1050694] Funding Source: National Science Foundation
  11. Directorate For Geosciences [1519401] Funding Source: National Science Foundation
  12. Division Of Environmental Biology [1554702] Funding Source: National Science Foundation

向作者/读者索取更多资源

1. Theoretical and empirical ecology has transitioned from a focus on the role of negative interactions in species coexistence to a more pluralistic view that acknowledges that coexistence in natural communities is more complex, and depends on species interactions that vary in strength, sign, and reciprocity, and such contexts as the environment and life-history stage. 2. We used a whole-community approach to examine how species interactions contribute to the maintenance of a rocky intertidal macroalgal canopy-understorey assemblage. We determined both the types of interactions in this network, and whether interactions were sensitive to environmental gradients. 3. Focusing on a structurally dominant canopy kelp Saccharina sessilis, and its diverse co-occurring understorey assemblage, we evaluated the role of the understorey in controlling S. sessilis recruitment and quantified the reciprocal effect of the S. sessilis canopy and understorey on one another using a removal experiment replicated across 600 km of coastline. We determined the sensitivity of interactions to natural variation in light and nutrient availability (replicated among four regions on the N.E. Pacific coast), and under different wave conditions (three wave regimes). 4. Surprisingly, species interactions were similar across sites and thus not context-dependent. Unexpectedly, the understorey community had a strong positive effect on the S. sessilis canopy, whereby the adult canopy decreased dramatically following understorey removal. Additionally, S. sessilis recruitment depended on the presence of understorey coralline algal turf. In turn, the canopy had a neutral effect on the coralline understorey, but a negative effect on non-calcifying algal turfs, likely eventually generating positive indirect canopy effects on the coralline understorey. Density-dependent intraspecific competition between S. sessilis adults and recruits may moderate this positive feedback between the S. sessilis canopy and coralline understorey. 5. Synthesis. Our research highlights the importance of positive interactions for coexistence in natural communities, and the necessity of studying multiple life-history stages and reciprocal species interactions in order to elucidate the mechanisms that maintain diversity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据