4.6 Article

A terminal protection system for the detection of adenosine triphosphate via enzyme-assisted signal amplification

期刊

ANALYTICAL METHODS
卷 7, 期 3, 页码 970-975

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4ay02265c

关键词

-

资金

  1. National Natural Science Foundation [81271660]
  2. Doctoral Program of Higher Education from the Ministry of Education [20114306110006]

向作者/读者索取更多资源

In this study, we have developed a biosensor to detect adenosine triphosphate (ATP), based on fluorescence resonance energy transfer (FRET) and making use of the activities of exonuclease I (EXO I) and exonuclease III (EXO III). In the absence of ATP in the biosensor reaction system, the aptasensor is hydrolyzed by EXO I. When ATP is present, it conjugates with the aptasensor and protects it from hydrolysis by EXO I; the aptasensor can then hybridize with a fluorescent sequence linked to graphene oxide (GO). The dsDNA formed by the interaction between the aptasensor and the fluorescent sequence is then recognized and cleaved by EXO III. The increased distance between the fluorescent particle (FAM, 6-carboxyfluorescein) and the GO significantly hinders the FRET and increases the fluorescence of FAM. By incorporating EXO III into the process, the fluorescence signals of the biosensor are therefore greatly amplified and they were found to displayed a good linear relationship with ATP concentration, in the range from 0 to 3 mu M. This system can be widely employed for the detection of other biological molecules.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据