4.3 Article

Carbonic anhydrase II promotes cardiomyocyte hypertrophy

期刊

CANADIAN JOURNAL OF PHYSIOLOGY AND PHARMACOLOGY
卷 90, 期 12, 页码 1599-1610

出版社

CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS
DOI: 10.1139/y2012-142

关键词

cardiac hypertrophy; heart failure; carbonic anhydrase; bicarbonate transport; sodium-proton exchange; adenovirus; knockout mouse

资金

  1. AHFMR

向作者/读者索取更多资源

Pathological cardiac hypertrophy, the maladaptive remodelling of the myocardium, often progresses to heart failure. The sodium-proton exchanger (NHE1) and chloride-bicarbonate exchanger (AE3) have been implicated as important in the hypertrophic cascade. Carbonic anhydrase II (CAII) provides substrates for these transporters (protons and bicarbonate, respectively). CAII physically interacts with NHE1 and AE3, enhancing their respective ion transport activities by increasing the concentration of substrate at their transport sites. Earlier studies found that a broad-spectrum carbonic anhydrase inhibitor prevented cardiomyocyte hypertrophy (CH), suggesting that carbonic anhydrase is important in the development of hypertrophy. Here we investigated whether cytosolic CAII was the CA isoform involved in hypertrophy. Neonatal rat ventricular myocytes (NRVMs) were transduced with recombinant adenoviral constructs to over-express wildtype or catalytically inactive CAII (CAII-V143Y). Over-expression of wild-type CAII in NRVMs did not affect CH development. In contrast, CAII-V143Y over-expression suppressed the response to hypertrophic stimuli, suggesting that CAII-V143Y behaves in a dominant negative fashion over endogenous CAII to suppress hypertrophy. We also examined CAII-deficient (Car2) mice, whose hearts exhibit physiological hypertrophy without any decrease in cardiac function. Moreover, cardiomyocytes from Car2 mice do not respond to prohypertrophic stimulation. Together, these findings support a role of CAII in promoting CH.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据