4.1 Review

Enzymatic processes for biodegradation of poly(hydroxyalkanoate)s crystals

出版社

CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS
DOI: 10.1139/V08-004

关键词

poly(hydroxyalkanoate) (PHA); enzymatic degradation; lamellar crystal; PHA depolymerase

向作者/读者索取更多资源

Poly(hydroxyalkanoate)s (PHAs) have attracted much attention as environmentally compatible polymeric materials that can be produced from renewable carbon resources. Biodegradation of PHA materials occurs by the function of extracellular PHA depolymerase secreted from microorganisms. Thus, elucidation of the enzymatic degradation mechanism for PHA materials is important to design PHA materials with desirable properties and controlled biodegradability. The solid PHA polymer is a water-insoluble substrate but PHA depolymerases are soluble in water. Therefore, the enzymatic degradation of PHA materials is a heterogeneous reaction on the material's surface. Two distinct processes are involved during the degradation, namely, adsorption of the enzyme on the surface of PHA material and the subsequent hydrolysis of polymer chains. Atomic force microscopy (AFM) is a powerful tool that has been used for the quantitative analysis of PHA crystal degradation. AFM enables the characterization of the crystal surface nanostructure in a buffer solution. By using in-situ (real-time) AFM observations, we recently succeeded in observing the degradation processes of PHA crystals. Subsequently, we were also able to investigate the degradation rates of PHA crystals using the same technique. In this review, we have attempted to give an overview concerning the direct visualization of the adsorption, as well as the hydrolysis reactions of PHA depolymerases at the nanometer scale. In addition, we present other analytical techniques besides AFM as a complimentary approach to analyze the effect of enzyme adsorption on PHA crystals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据