4.6 Article

In vivo electroporation to physiologically identified deep brain regions in postnatal mammals

期刊

Brain Structure & Function
卷 220, 期 3, 页码 1307-1316

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s00429-014-0724-x

关键词

Electroporation; Lateral geniculate nucleus; Visual cortex; Cat; Gene transfer

资金

  1. MEXT KAKENHI [22115010]
  2. JSPS KAKENHI [24650208]
  3. Grants-in-Aid for Scientific Research [24650208, 15H01440, 22115010] Funding Source: KAKEN

向作者/读者索取更多资源

Genetic manipulation is widely used to research the central nervous system (CNS). The manipulation of molecular expression in a small number of neurons permits the detailed investigation of the role of specific molecules on the function and morphology of the neurons. Electroporation is a broadly used technique for gene transfer in the CNS. However, the targeting of gene transfer using electroporation in postnatal animals was restricted to the cortex, hippocampus, or the region facing the ventricle in previous reports. Electroporation targeting of deep brain structures, such as the thalamus, has been difficult. We introduce a novel electroporation technique that enables gene transfer to a physiologically identified deep brain region using a glass pipette. We recorded neural activity in young-adult mice to identify the location of the lateral geniculate nucleus (LGN) of the thalamus, using a glass pipette electrode containing the plasmid DNA encoding enhanced green fluorescent protein (EGFP). The location of the LGN was confirmed by monitoring visual responses, and the plasmid solution was pressure-injected into the recording site. Voltage pulses were delivered through the glass pipette electrode. Several EGFP-labeled somata and dendrites were observed in the LGN after a few weeks, and labeled axons were found in the visual cortex. The EGFP-expressing structures were observed in detail sufficient to reconstruct their morphology in three dimensions. We further confirmed the applicability of this technique in cats. This method should be useful for the transfer of various genes into cells in physiologically identified brain regions in rodents and gyrencephalic mammals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据