4.5 Article

Distinct expression of cold receptors (TRPM8 and TRPA1) in the rat nodose-petrosal ganglion complex

期刊

BRAIN RESEARCH
卷 1319, 期 -, 页码 60-69

出版社

ELSEVIER
DOI: 10.1016/j.brainres.2010.01.016

关键词

Transient receptor potential melastatin-8; Transient receptor potential ankyrin-1; Jugular ganglion; Petrosal ganglion; Nodose ganglion; Transient receptor potential vanilloid-1

向作者/读者索取更多资源

TRPM8 and TRPA1 are cold-activated transient receptor potential (TRP) cation channels. TRPM8 is activated by moderate cooling, while TRPA1 is activated by extreme, noxious cold temperatures. These cold receptors are expressed in different subpopulations of primary afferent neurons. TRPA1 is co-expressed in a subpopulation of somatosensory neurons expressing TRPV1, which is activated by heat. However, the distribution and co-expression of these channels in the nodose-petrosal ganglion complex, which contains the jugular (JG), petrosal (PG), and nodose ganglia (NG) (mainly involved in putative somatic, chemo- and somato-sensation, and somato and visceral sensation, respectively), remain unknown. Here, we conducted in situ hybridization analysis of the rat nodose-petrosal ganglion complex using specific riboprobes for TRPM8, TRPA1, and TRPV1 to compare the features of the cranial sensory ganglia. Hybridization signals for TRPA1 were diffusely observed throughout these ganglia, whereas TRPM8 transcripts were seen in the JG and PG but not in the NG. We retrogradely labeled cranial nerve X with Fast Blue (fluorescent dye) and found TRPM8 transcripts in the jugular-vagal ganglion but not the NG neurons. TRPA1 transcripts were not detected in TRPM8-expressing neurons but were present in the subpopulation of TRPV1-expressing visceral sensory neurons. Taken together, these findings support that in the vagal system the expression of cold-activated TRP channels differs between nodose- and jugular-ganglion neurons suggesting different mechanisms of cold-transduction and that the TRPA1 distribution is consistent with its proposed function as a cold-sensing receptor in the visceral system. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据