4.6 Article

Identification of a Novel, Recurrent SLC44A1-PRKCA Fusion in Papillary Glioneuronal Tumor

期刊

BRAIN PATHOLOGY
卷 23, 期 2, 页码 121-128

出版社

WILEY
DOI: 10.1111/j.1750-3639.2012.00612.x

关键词

cytogenetic; fusion gene; papillary glioneuronal tumor; PRKCA; SLC44A1

资金

  1. Nebraska State LB595 [U-10-CA98543-091]
  2. UNMC Eppley Pediatric Research Cancer Award

向作者/读者索取更多资源

Mixed neuronal-glial tumors are rare and challenging to subclassify. One recently recognized variant, papillary glioneuronal tumor (PGNT), is characterized by prominent pseudopapillary structures and glioneuronal elements. We identified a novel translocation, t(9;17)(q31;q24), as the sole karyotypic anomaly in two PGNTs. A fluorescence in situ hybridization (FISH)-based positional cloning strategy revealed SLC44A1, a member of the choline transporter-like protein family, and PRKCA, a protein kinase C family member of serine/threonine-specific protein kinases, as the 9q31 and 17q24 breakpoint candidate genes, respectively. Reverse transcription-polymerase chain reaction (RT-PCR) analysis using a forward primer from SLC44A1 exon 5 and a reverse primer from PRKCA exon 10 confirmed the presence of a SLC44A1-PRKCA fusion product in both tumors. Sequencing of each chimeric transcript uncovered an identical fusion cDNA junction occurring between SLC44A1 exon 15 and PRKCA exon 9. A dual-color breakpoint-spanning probe set custom-designed for interphase cell recognition of the translocation event identified the fusion in a third PGNT. These results suggest that the t(9;17)(q31;q24) with the resultant novel fusion oncogene SLC44A1-PRKCA is the defining molecular feature of PGNT that may be responsible for its pathogenesis. The FISH and RT-PCR assays developed in this study can serve as valuable diagnostic adjuncts for this rare disease entity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据